np.random模块的使用介绍
np.random模块常用的一些方法介绍
名称 作用
numpy.random.rand(d0, d1, …, dn) 生成一个[d0, d1, …, dn]维的numpy数组,数组的元素取自[0, 1)上的均分布,若没有参数输入,则生成一个[0, 1)的数。
numpy.random.randn(d0, d1, …, dn) 生成一个[d0, d1, …, dn]维的numpy数组,具有标准正态分布。
numpy.random.randint(low, high=None, size=None, dtype=‘I’) 生成整数,取值范围为[low, high),若没有输入参数high,则取值区间为[0, low)。
numpy.random.uniform(low=0.0, high=1.0, size=None) 生成符合均分布的浮点数,取值范围为[low, high),默认取值范围为[0, 1.0)。
numpy.random.normal(loc=0.0, scale=1.0, size=None) 按照正态分布生成均值为loc,标准差为scale的,形状为size的浮点数。
numpy.random.random(size=None) 生成[0.0, 1.0)之间的浮点数。
numpy.random.choice(a, size=None, replace=True, p=None) 从a(数组)中选取size(维度)大小的随机数,replace=True表示可重复抽取,p是a中每个数出现的概率。若a是整数,则a代表的数组是arange(a)。
例子
numpy.random.rand(d0, d1, …, dn):
生成一个[d0, d1, …, dn]维的numpy数组,数组的元素取自[0, 1)上的均分布,若没有参数输入,则生成一个[0, 1)的数。
import numpy as np
v1 = np.random.rand()
v2 = np.random.rand(3,4)
print(v1)
print(v2)
输出结果为:
0.618411110932038
[[0.35134062 0.55609186 0.4173297 0.85541691]
[0.35144304 0.31204156 0.60196109 0.390464 ]
[0.19186067 0.94570486 0.8637441 0.07028114]]
numpy.random.randn(d0, d1, …, dn):
生成一个[d0, d1, …, dn]维的numpy数组,具有标准正态分布。
import numpy as np
v1 = np.random.randn()
v2 = np.random.randn(3,4)
print(v1)
print(v2)
输出结果为:
0.47263651836701953
[[-0.23431214 0.97197099 0.52845269 -0.45246824]
[-1.1266395 -1.60040653 -2.64602615 -0.19457032]
[-0.520287 -1.0799122 0.08441667 0.34980224]]
numpy.random.randint(low, high=None, size=None, dtype=‘I’):
生成整数,取值范围为[low, high),若没有输入参数high,则取值区间为[0, low)。
import numpy as np
v1 = np.random.randint(5)
v2 = np.random.randint(1,high = 5)
v3 = np.random.randint(1,high = 5,size = [3,4])
print(v1)
print(v2)
print(v3)
输出结果为:
2
3
[[1 1 3 1]
[2 2 3 2]
[3 4 2 1]]
numpy.random.uniform(low=0.0, high=1.0, size=None):
生成符合均分布的浮点数,取值范围为[low, high),默认取值范围为[0, 1.0)。
import numpy as np
v1 = np.random.uniform()
v2 = np.random.uniform(low = 0,high = 5)
v3 = np.random.uniform(low = 0,high = 5,size = [3,4])
print(v1)
print(v2)
print(v3)
输出结果为:
0.6925621763952164
3.0483936610544218
[[1.34959297 4.84117424 0.41277118 4.81392216]
[2.91266734 0.87922181 3.39729422 3.34340092]
[0.45158364 3.8129479 0.54246798 2.57192192]]
numpy.random.normal(loc=0.0, scale=1.0, size=None)
按照正态分布生成均值为loc,标准差为scale的,形状为size的浮点数。
import numpy as np
v1 = np.random.normal()
v2 = np.random.normal(loc = 0,scale = 5)
v3 = np.random.normal(loc = 0,scale = 5,size = [3,4])
print(v1)
print(v2)
print(v3)
输出结果为:无锡人流医院哪家好 http://www.wxbhnkyy120.com/
0.7559391954091367
-3.359831771004067
[[ 3.90821047 6.37757533 6.3813528 0.86219281]
[ -3.61201084 4.05948053 -3.91172941 11.29050165]
[ -8.60318633 -10.07090496 -4.86557867 7.98536182]]
numpy.random.random(size=None)
生成[0.0, 1.0)之间的浮点数。
import numpy as np
v1 = np.random.random()
v2 = np.random.random(size = [3,4])
print(v1)
print(v2)
输出结果为:
0.5930924941107145
[[0.41002067 0.28097163 0.8908558 0.16951515]
[0.59730596 0.57475303 0.84174255 0.59633522]
[0.63508879 0.44138737 0.6223043 0.61540997]]
numpy.random.choice(a, size=None, replace=True, p=None)
从a(数组)中选取size(维度)大小的随机数,replace=True表示可重复抽取,p是a中每个数出现的概率。若a是整数,则a代表的数组是arange(a)。
import numpy as np
v1 = np.random.choice(5)
v2 = np.random.choice(5,size = 5)
v3 = np.random.choice([1,2,3,4,5],size = 5)
v4 = np.random.choice([1,2,3,4,5],size = 5,p = [1,0,0,0,0])
v5 = np.random.choice([1,2,3,4,5],size = 5,replace = False)
print("v1:",v1)
print("v2:",v2)
print("v3:",v3)
print("v4:",v4)
print("v5:",v5)
输出结果为:
v1: 1
v2: [0 0 4 0 4]
v3: [3 2 3 1 1]
v4: [1 1 1 1 1]
v5: [4 2 3 5 1]
np.random模块的使用介绍的更多相关文章
- python random模块(14)
random 模块包括返回随机数的函数,可以用于模拟或者任何产生随机输出的程序. 一.random模块常用函数介绍 random.random() — 生成一个从0.0(包含)到 1.0(不包含)之间 ...
- python标准库介绍——27 random 模块详解
==random 模块== "Anyone who considers arithmetical methods of producing random digits is, of cour ...
- Python基础系列讲解——random模块随机数的生成
随机数参与的应用场景大家一定不会陌生,比如密码加盐时会在原密码上关联一串随机数,蒙特卡洛算法会通过随机数采样等等.Python内置的random模块提供了生成随机数的方法,使用这些方法时需要导入ran ...
- numpy中的np.random.mtrand.RandomState
1 RandomState 的应用场景概述 在训练神经网络时,苦于没有数据,此时numpy为我们提供了 “生产” 数据集的一种方式. 例如在搭建神经网络(一)中的 4.3 准备数据集 章节中就是采用n ...
- ZH奶酪:【Python】random模块
Python中的random模块用于随机数生成,对几个random模块中的函数进行简单介绍.如下:random.random() 用于生成一个0到1的随机浮点数.如: import random ra ...
- 【numpy】新版本中numpy(numpy>1.17.0)中的random模块
numpy是Python中经常要使用的一个库,而其中的random模块经常用来生成一些数组,本文接下来将介绍numpy中random模块的一些使用方法. 首先查看numpy的版本: import nu ...
- Python中的random模块,来自于Capricorn的实验室
Python中的random模块用于生成随机数.下面介绍一下random模块中最常用的几个函数. random.random random.random()用于生成一个0到1的随机符点数: 0 < ...
- 随机内容生成(random模块)
摘抄于: 低调的python小子 当梦想照进现实 幸福近在咫尺 [jpg]http://ip.ipwind.cn/msn.png[/jpg] Python中的random模块用于生成随机数.下面介绍 ...
- Python中的random模块
Python中的random模块用于生成随机数.下面介绍一下random模块中最常用的几个函数. random.random random.random()用于生成一个0到1的随机符点数: 0 < ...
随机推荐
- 转载【MySQL】MySQL5.X常用日志配置及5.7和5.6主从复制的区别
转载:https://blog.csdn.net/zyb378747350/article/details/78728886 2)MySQL5.7和5.6主从复制的区别: . 5.6之后默认binlo ...
- Linux的tmpfs和ramfs
tmpfs tmpfs是一种虚拟内存文件系统, 它的存储空间在VM里面,现在大多数操作系统都采用了虚拟内存管理机制, VM(Virtual Memory) 是由Linux内核里面的VM子系统管理. V ...
- unix_timestamp 时间戳函数用法(hive)
pandas和SQL数据分析实战 https://study.163.com/course/courseMain.htm?courseId=1006383008&share=2&sha ...
- openwrt的shell下如何访问寄存器的内容?
答:通过devmem工具(在openwrt的make menuconfig中可以使能该工具) $ busybox devmem 0x123456
- Linux find命令忽略目录的查找方法
在Linux操作系统中,find命令非常强大,在文件与目录的查找方面可谓无所不至其极,如果能结合xargs命令使得,更是强大无比. 以下来看看find命令忽略目录查找的用法吧. 例1,根据文件属性查找 ...
- Sword 位运算取余操作
/* 位运算取余操作 */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include ...
- 深入浅出依赖注入容器——Autofac
1.写在前面 相信大家对IOC和DI都耳熟能详,它们在项目里面带来的便利大家也都知道,微软新出的.NetCore也大量采用了这种手法. 如今.NetCore也是大势所趋了,基本上以.Net为技术主导的 ...
- dotnet core swagger filter 隐藏接口和显示枚举描述
dotnet core 2.2开发项目中,常会使用Swagger UI来生成在线Api文档. 某些接口不想放到Swagger中可以这样写Filter: /// <summary> /// ...
- cube-ui按钮配合toast单例模式应用
<template> <div> <cube-button icon="cubeic-right" @click="goNext" ...
- [ARM-Linux开发] 主设备号--驱动模块与设备节点联系的纽带
一.如何对设备操作 linux中对设备进行操作是通过文件的方式进行的,包括open.read.write.对于设备文件,一般称其为设备节点,节点有一个属性是设备号(主设备号.次设备号),其中主设备号将 ...