数据分组统计函数族——apply族用法与心得
笔者寄语:apply族功能强大,实用,可以代替很多循环语句,R语言中不要轻易使用循环语句。
原文链接: https://blog.csdn.net/sinat_26917383/article/details/51086663
函数名 功能 特点
apply 按行、列运算均值、求和、众数等 简单运算
tapply=table apply 在apply之上加入table功能,可以分组汇总 table结合,可以分组汇总
lapply=list apply 都需要数据框格式,可以与list合用,返回仍是list list用法
sapply=simplify apply=unlist(lapply) 都需要数据框格式,可以与list合用,返回是矩阵 与lapply一样,但是可以输出矩阵格式
apply
Apply Functions Over Array Margins
对阵列行或者列使用函数
apply(X, MARGIN, FUN, ...)
lapply
Apply a Function over a List or Vector
对列表或者向量使用函数
lapply(X, FUN, ...)
sapply
Apply a Function over a List or Vector
对列表或者向量使用函数
sapply(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE)
vapply
Apply a Function over a List or Vector
对列表或者向量使用函数
vapply(X, FUN, FUN.VALUE, ..., USE.NAMES = TRUE)
tapply
Apply a Function Over a Ragged Array
对不规则阵列使用函数
tapply(X, INDEX, FUN = NULL, ..., simplify = TRUE)
eapply
Apply a Function Over Values in an Environment
对环境中的值使用函数
eapply(env, FUN, ..., all.names = FALSE, USE.NAMES = TRUE)
mapply
Apply a Function to Multiple List or Vector Arguments
对多个列表或者向量参数使用函数
mapply(FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE, USE.NAMES = TRUE)
rapply
Recursively Apply a Function to a List
运用函数递归产生列表
rapply(object, f, classes = "ANY", deflt = NULL,how = c("unlist", "replace", "list"), ...)
1、apply函数
对一个数组按行或者按列进行计算,矩阵纵、横运算(sum,average等)
其中apply中,1等于行,2等于列
> ma <- matrix(c(1:4, 1, 6:8), nrow = 2)
> ma
[,1] [,2] [,3] [,4]
[1,] 1 3 1 7
[2,] 2 4 6 8
> apply(ma, c(1,2), sum)
[,1] [,2] [,3] [,4]
[1,] 1 3 1 7
[2,] 2 4 6 8
> apply(ma, 1, sum)
[1] 12 20
> apply(ma, 2, sum)
[1] 3 7 7 15
> tapply(1:17, fac, sum, simplify = FALSE)
$`1`
[1] 51
$`2`
[1] 57
$`3`
[1] 45
$`4`
NULL
$`5`
NULL
> tapply(1:17, fac, range)
$`1`
[1] 1 16
$`2`
[1] 2 17
$`3`
[1] 3 15
$`4`
NULL
$`5`
NULL
2、tapply
(进行分组统计)
tapply(X, INDEX, FUN = NULL, ..., simplify = TRUE)
#把x在index分类下进行fun
#例:把x在因子分类下,进行汇总操作
fac <- factor(rep(1:3, length = 4), levels = 1:5)
fac
[1] 1 2 3 1
Levels: 1 2 3 4 5
tapply(1:4, fac, sum)
1 2 3 4 5
5 2 3 NA NA
#当index不是因子时,可以用as.factor()把参数强制转换成因子
额外案例,实现excel中数据透视表的功能
#利用tapply实现类似于excel里的数据透视表的功能:
> da
year province sale
1 2007 A 1
2 2007 B 2
3 2007 C 3
4 2007 D 4
5 2008 A 5
6 2008 C 6
7 2008 D 7
8 2009 B 8
9 2009 C 9
10 2009 D 10
> attach(da)
> tapply(sale,list(year,province)) #以sale为基,按照year,province的顺序,排列
[1] 1 4 7 10 2 8 11 6 9 12
> tapply(sale,list(year,province),mean)
A B C D
2007 1 2 3 4
2008 5 NA 6 7
2009 NA 8 9 10
3、函数table(求因子出现的频数)
使用格式为:
table(..., exclude = if (useNA == "no") c(NA, NaN), useNA = c("no",
"ifany", "always"), dnn = list.names(...), deparse.level = 1)
其中参数exclude表示哪些因子不计算。
示例代码:
> d <- factor(rep(c("A","B","C"), 10), levels=c("A","B","C","D","E"))
> d
[1] A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C
Levels: A B C D E
> table(d, exclude="B")
d
A C D E
10 10 0 0
4、函数lapply与函数sapply
每一列数据采用同一种函数形式,比如求X变量得分位数,比如求X变量的循环函数。
lapply的使用格式为:
lapply(X, FUN, ...)
lapply的返回值是和一个和X有相同的长度的list对象,
这个list对象中的每个元素是将函数FUN应用到X的每一个元素。
其中X为List对象(该list的每个元素都是一个向量),
其他类型的对象会被R通过函数as.list()自动转换为list类型。
函数sapply是函数lapply的一个特殊情形,对一些参数的值进行了一些限定,其使用格式为:
sapply(X, FUN,..., simplify = TRUE, USE.NAMES = TRUE)
sapply(*, simplify = FALSE, USE.NAMES = FALSE) 和lapply(*)的返回值是相同的。
如果参数simplify=TRUE,则函数sapply的返回值不是一个list,而是一个矩阵;
若simplify=FALSE,则函数sapply的返回值仍然是一个list。
x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE))
> lapply(x, quantile)
$a
0% 25% 50% 75% 100%
1.00 3.25 5.50 7.75 10.00
$beta
0% 25% 50% 75% 100%
0.04978707 0.25160736 1.00000000 5.05366896 20.08553692
$logic
0% 25% 50% 75% 100%
0.0 0.0 0.5 1.0 1.0
> sapply(x, quantile,simplify=FALSE,use.names=FALSE)
$a
0% 25% 50% 75% 100%
1.00 3.25 5.50 7.75 10.00
$beta
0% 25% 50% 75% 100%
0.04978707 0.25160736 1.00000000 5.05366896 20.08553692
$logic
0% 25% 50% 75% 100%
0.0 0.0 0.5 1.0 1.0
#参数simplify=TRUE的情况
> sapply(x, quantile)
a beta logic
0% 1.00 0.04978707 0.0
25% 3.25 0.25160736 0.0
50% 5.50 1.00000000 0.5
75% 7.75 5.05366896 1.0
100% 10.00 20.08553692 1.0
5、函数mapply
函数mapply是函数sapply的变形版,mapply 将函数 FUN 依次应用每一个参数的第一个元素、第二个元素、第三个元素上。函数mapply的使用格式如下:
mapply(FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE,USE.NAMES = TRUE)
其中参数MoreArgs表示函数FUN的参数列表。
> mapply(rep, times=1:4, x=4:1)
[[1]]
[1] 4
[[2]]
[1] 3 3
[[3]]
[1] 2 2 2
[[4]]
[1] 1 1 1 1
#直接使用函数rep的结果:
> rep(1:4,1:4)
[1] 1 2 2 3 3 3 4 4 4 4
6、vapply {base}——按变量进行函数操作
vapply类似于sapply函数,但是它的返回值有预定义类型,所以它使用起来会更加安全,有的时候会更快。
在vapply函数中总是会进行简化,vapply会检测FUN的所有值是否与FUN.VALUE兼容,
以使他们具有相同的长度和类型。类型顺序:逻辑、整型、实数、复数
vapply(X, FUN, FUN.VALUE, ..., USE.NAMES = TRUE)
X表示一个向量或者表达式对象,其余对象将被通过as.list强制转换为list
simplify 逻辑值或者字符串,如果可以,结果应该被简化为向量、矩阵或者高维数组。
必须是命名的,不能是简写。默认值是TRUE,若合适将会返回一个向量或者矩阵。如果simplify=”array”,结果将返回一个阵列。
USE.NAMES 逻辑值,如果为TRUE,且x没有被命名,则对x进行命名。
FUN.VALUE 一个通用型向量,FUN函数返回值得模板。
> x<-data.frame(a=rnorm(4,4,4),b=rnorm(4,5,3),c=rnorm(4,5,3))
> vapply(x,mean,c(c=0))
a b c
1.8329043 6.0442858 -0.1437202
> k<-function(x)
+ {
+ list(mean(x),sd(x))
+ }
> vapply(x,k,c(c=0))
错误于vapply(x, k, c(c = 0)) : 值的长度必需为1,
但FUN(X[[1]])结果的长度却是2
> vapply(x,k,c(c=0,b=0))
错误于vapply(x, k, c(c = 0, b = 0)) : 值的种类必需是'double',
但FUN(X[[1]])结果的种类却是'list'
> vapply(x,k,c(list(c=0,b=0)))
a b c
c 1.832904 6.044286 -0.1437202
b 1.257834 1.940433 3.649194
sapply与vapply函数之间的区别:
> i39 <- sapply(3:9, seq)
> i39
[[1]]
[1] 1 2 3
[[2]]
[1] 1 2 3 4
[[3]]
[1] 1 2 3 4 5
[[4]]
[1] 1 2 3 4 5 6
[[5]]
[1] 1 2 3 4 5 6 7
[[6]]
[1] 1 2 3 4 5 6 7 8
[[7]]
[1] 1 2 3 4 5 6 7 8 9
> sapply(i39, fivenum)
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 1.0 1.0 1 1.0 1.0 1.0 1
[2,] 1.5 1.5 2 2.0 2.5 2.5 3
[3,] 2.0 2.5 3 3.5 4.0 4.5 5
[4,] 2.5 3.5 4 5.0 5.5 6.5 7
[5,] 3.0 4.0 5 6.0 7.0 8.0 9
> vapply(i39, fivenum,
+ c(Min. = 0, "1st Qu." = 0, Median = 0, "3rd Qu." = 0, Max. = 0))
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
Min. 1.0 1.0 1 1.0 1.0 1.0 1
1st Qu. 1.5 1.5 2 2.0 2.5 2.5 3
Median 2.0 2.5 3 3.5 4.0 4.5 5
3rd Qu. 2.5 3.5 4 5.0 5.5 6.5 7
Max. 3.0 4.0 5 6.0 7.0 8.0 9
7、eapply {base}
eapply函数通过对environment中命名值进行FUN计算后返回一个列表值,用户可以请求所有使用过的命名对象。
eapply(env, FUN, ..., all.names = FALSE, USE.NAMES = TRUE)
env 将被使用的环境
all.names 逻辑值,指示是否对所有值使用该函数
USE.NAMES 逻辑值,指示返回的列表结果是否包含命名
> require(stats)
>
> env <- new.env(hash = FALSE) # so the order is fixed
> env$a <- 1:10
> env$beta <- exp(-3:3)
> env$logic <- c(TRUE, FALSE, FALSE, TRUE)
> # what have we there?
> utils::ls.str(env)
a : int [1:10] 1 2 3 4 5 6 7 8 9 10
beta : num [1:7] 0.0498 0.1353 0.3679 1 2.7183 ...
logic : logi [1:4] TRUE FALSE FALSE TRUE
>
> # compute the mean for each list element
> eapply(env, mean)
$logic
[1] 0.5
$beta
[1] 4.535125
$a
[1] 5.5
> unlist(eapply(env, mean, USE.NAMES = FALSE))
[1] 0.500000 4.535125 5.500000
>
> # median and quartiles for each element (making use of "..." passing):
> eapply(env, quantile, probs = 1:3/4)
$logic
25% 50% 75%
0.0 0.5 1.0
$beta
25% 50% 75%
0.2516074 1.0000000 5.0536690
$a
25% 50% 75%
3.25 5.50 7.75
> eapply(env, quantile)
$logic
0% 25% 50% 75% 100%
0.0 0.0 0.5 1.0 1.0
$beta
0% 25% 50% 75% 100%
0.04978707 0.25160736 1.00000000 5.05366896 20.08553692
$a
0% 25% 50% 75% 100%
1.00 3.25 5.50 7.75 10.00
8、rapply {base}
rapply是lapply的递归版本
rapply(X, FUN, classes = "ANY", deflt = NULL, how = c("unlist", "replace", "list"), ...)
X 一个列表
classes 关于类名的字符向量,或者为any时则匹配任何类
deflt 默认结果,如果使用了how=”replace”,则不能使用
how 字符串匹配三种可能结果
————————————————
版权声明:本文为CSDN博主「悟乙己」的原创文章,遵循CC 4.0 by-sa版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/sinat_26917383/article/details/51086663
数据分组统计函数族——apply族用法与心得的更多相关文章
- R语言︱数据分组统计函数族——apply族用法与心得
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:apply族功能强大,实用,可以代替 ...
- mysql按天,小时,半小时,N分钟,分钟进行数据分组统计
转自:https://blog.csdn.net/u010946448/article/details/83752984#_75
- Dev用于界面按选中列进行分组统计数据源(实用技巧)
如果有用U8的可以明白这个功能就是模仿他的统计功能.我不过是把他造成通用的与适应于DEV的. (效率为6000条数据分组统计时间为3秒左右分组列过多5秒.1000条以下0.几秒,500条下0.00几秒 ...
- Python3-sqlalchemy-orm 分组统计
#-*-coding:utf-8-*- #__author__ = "logan.xu" import sqlalchemy from sqlalchemy import crea ...
- R中利用apply、tapply、lapply、sapply、mapply、table等函数进行分组统计
apply函数(对一个数组按行或者按列进行计算): 使用格式为: apply(X, MARGIN, FUN, ...) 其中X为一个数组:MARGIN为一个向量(表示要将函数FUN应用到X的行还是列) ...
- mysql按日期分组统计数据
最近在做一个招聘网时,需要显示一个月内企业招聘信息的发布数量,按日期分组统计,刚开始是直接从源数据库表里面进行group by,但这样子就出现日期不连续的问题了,我想要的效果是,若当天没有数据,则显示 ...
- 常用sql:按照表中的某一列对数据进行分组,统计数据条数
select FROM_UNIXTIME(start_time,'%Y-%m-%d')as date,COUNT(*) FROM random_num GROUP BY FROM_UNIXTIME(s ...
- 数据可视化之powerBI技巧(二十)采悟:创建度量值,轻松进行分组统计
上一篇文章中的分组,都是通过新建列的方式实现的,直观上比较容易理解.不过这样都修改了原始数据的结构,如果我们不在源表上进行修改,直接通过度量值的方式来进行分组,是否可以实现呢? 答案当然是肯定的. 采 ...
- Oracle按不同时间分组统计
Oracle按不同时间分组统计 Oracle按不同时间分组统计的sql 如下表table1: 日期(exportDate) 数量(amount) -------------- ----------- ...
随机推荐
- p1842 奶牛玩杂技 题解
感觉其他dalao讲的不是很明白啊,我这样的蒟蒻看不懂啊. 在luogu这个dalao遍地的地方我蒟蒻看个题解也不明白,我为跟我同病相怜的蒟蒻写一篇吧 其实真是不太明白,大部分题解都是只说 体重大的在 ...
- bfc与浮动元素的关系
首先说明两个特性: 1,浮动元素兄弟元素的布局规则 当html中存在浮动元素时,其兄弟元素的布局遵循如下规则: (1)块级元素的渲染无视浮动元素 (2)文本内容或者是行内元素的渲染会考虑到浮动元素的存 ...
- haproxy 配置文件详解 之 配置文件示例
此示例文件在haproxy1.8.20 测试没有问题: global log 127.0.0.1 local0 info maxconn user nobody group nobody daemon ...
- 【Gamma】PhyLab 测试报告
PhyLab Gamma测试报告 测试中发现的bug Gamma阶段新Bug Bug 可能原因 部分错误码设置与原先抛异常的逻辑冲突 原先代码中使用了一些特殊的办法处理异常 Beta未发现Bug Bu ...
- Java一个对象占用多少字节
虚拟机:Java HotSpot(TM) 64-Bit Server VM (25.221-b11, mixed mode) 对象的内存以字节为单位,且必须是8的倍数,它的构成由3部分组成:对象头+实 ...
- Win10开启上帝模式
1.新建一个文件夹2.修改文件夹名字为 上帝模式.{ED7BA470-8E54-465E-825C-99712043E01C}
- 【题解】Luogu P5301 [GXOI/GZOI2019]宝牌一大堆
原题传送门 首先先要学会麻将,然后会发现就是一个暴力dp,分三种情况考虑: 1.非七对子国士无双,设\(dp_{i,j,k,a,b}\)表示看到了第\(i\)种牌,一共有\(j\)个\(i-1\)开头 ...
- Java学习:等待唤醒机制
等待唤醒机制 线程的状态 NEW 至今尚未启动的线程处于这种状态 RUNNABLE 正在Java虚拟机中执行的线程处于这种状态 BLOCKED 受阻塞并等待某个监视器锁的线程处于这种状态 WA ...
- golang 源码文件
Go源码文件分三个种类: 1)命令源码文件:如果一个源码文件被声明属于main代码包,且该文件代码中包含无参数声明和结果声明的main函数,则它就是命令源码文件.命令源码文件可以通过go run命令直 ...
- Windows服务的安装及配合定时器编写简单的程序
最近要实时统计一些数据,所以就用到了Windows服务及定时任务,在这里记录下. Windows Service简介: 一个Windows服务程序是在Windows操作系统下能完成特定功能的可执行的应 ...