一、时间复杂度

  在进行算法分析时,语句总的执行次数 T(n) 是关于问题的规模n 的函数,进而分析 T(n) 随 n 的变化情况并确定 T(n) 的数量级,算法的时间复杂度,也就是算法的时间度量,记作:T(n) = O(f( ))。它表示随问题的规模 n 的增大,算法的执行时间的增长率 f(n) 的增长率相同,称作算法的渐近时间复杂度,简称为时间的复杂度,其中 f(n) 是问题规模n的某个函数。

这样用大写 [ O( ) ] 来体现算法时间复杂度的记法,我们就称之为大O记法。例如:O(n)、O(1)、O(n2)、O(log n) 等等。一般情况下,随着 n 的增大,T(n) 增长最慢的算法为最优算法。

二、推导大O阶的方法

1,用时间1取代运算时间中的所有加法常数。

2,在修改后的运行的函数中,只保留最高阶项。

3,如果最高阶项存在且不是1,则去除与这个项相乘的常数。得到的结果就是大O阶。

例1:时间复杂度为O(1)常数阶的算法

 int sum = 0, n = 100;    /* 执行一次 */
sum = (1+n) *n/2; /* 执行一次 */
printf("the sum is:%d",sum); /* 执行一次 */

  我们可以看出运行次数的函数是 f(n) = 3。根据我们上面的大O阶公式 1 可以得到,把常数项 3 改为 1,在保留最高阶时发现没有最高阶项,所以时间复杂度为大 O(1)。也就是说,无论算法是 3 次还是 30 次,哪怕是 300 次,这些只要是常数项,它的时间复杂度都为大 O(1),而不是O(3)、O(30)、O(300)。即我们称之为常数阶。

例2:时间复杂度为O(n)线性阶的算法

 for(int i = 0; i < n; i++) {
sum += i;
}

  从上面的这段代码我们可以看出,它的时间复杂度为O(n),因为循环体中的代码需要执行n次。

例3:时间复杂度为O(n2)平方阶的算法

1 for(int i = 0; i < n; i++) {
2 for(int j = i; j < n; j++) {
3 //时间复杂度为O(n2)
4 }
5 }

分析:

  当 i = 0时,内循环执行了 n 次,

  当 i = 1时,内循环执行了 n-1 次,

  ......

  当 i = n-1时。执行了 1 次,

  所以总的执行次数为:n = (n-1)+(n-2)+ ··· + 1= n(n+1)/2 = n2/2+n/2。

  由上面的公式可得:第一条代码中没有加法常数项,不考虑;第二条只保留最高阶项,因此保留 n2/2;第三条去除这个项相乘的常数,所以去除了 1/2;最终我们得到的代码段时间复杂度就是 O(n2)。

例4:时间复杂度为O(log n)对数阶的算法

 int count = 1;
while (count < n) {
count *= 2;
}

  上面代码我们可以看出,count = count * 2 之后就距离 n 更近一步,也就是说,有多少个 2 相乘后大于 n,就退出循环。所以我们可以由 2x = n 推导出 x = log2n ,像这样的循环时间复杂度,我们就称为对数阶的复杂度即为 O(log n)。

三、O阶算法效率排序

   数据结构中我们一般常用的时间复杂度表示有:O(1)、O(n)、O(n2)、O(log n)、O(nlog n)、O(n3)、O(2n)。

  按时间复杂度所耗费的时间从大到小排序依次为:

  O(1) < O(log n) < O(n) < O(nlog n) < O(n2) < O(n3) < O(2n)

算法的时间复杂度O的更多相关文章

  1. C#中常用的排序算法的时间复杂度和空间复杂度

    常用的排序算法的时间复杂度和空间复杂度   常用的排序算法的时间复杂度和空间复杂度 排序法 最差时间分析 平均时间复杂度 稳定度 空间复杂度 冒泡排序 O(n2) O(n2) 稳定 O(1) 快速排序 ...

  2. 算法的时间复杂度(大O表示法)

    定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”. 当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性 ...

  3. 深入浅出数据结构C语言版(2)——简要讨论算法的时间复杂度

    所谓算法的"时间复杂度",你可以将其理解为算法"要花费的时间量".比如说,让你用抹布(看成算法吧--)将家里完完全全打扫一遍大概要5个小时,那么你用抹布打扫家里 ...

  4. php算法基础----时间复杂度和空间复杂度

    算法复杂度分为时间复杂度和空间复杂度. 其作用: 时间复杂度是指执行算法所需要的计算工作量: 而空间复杂度是指执行这个算法所需要的内存空间. (算法的复杂性体现在运行该算法时的计算机所需资源的多少上, ...

  5. 关于算法的时间复杂度O(f(n))

    (一)算法时间复杂度定义: 在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级.算法的时间复杂度,也就是算法的时间量度,记作:T(n ...

  6. KMP算法的时间复杂度与next数组分析

    一.什么是 KMP 算法 KMP 算法是一种改进的字符串匹配算法,用于判断一个字符串是否是另一个字符串的子串 二.KMP 算法的时间复杂度 O(m+n) 三.Next 数组 - KMP 算法的核心 K ...

  7. 算法中时间复杂度概括——o(1)、o(n)、o(logn)、o(nlogn)

    在描述算法复杂度时,经常用到 o(1), o(n), o(logn), o(nlogn) 来表示对应算法的时间复杂度, 这里进行归纳一下它们代表的含义:这是算法的时空复杂度的表示.不仅仅用于表示时间复 ...

  8. 算法的时间复杂度 & 性能对比

    算法的时间复杂度 & 性能对比 累加算法性能对比 // js 累加算法性能对比测试 const n = 10**6; (() => { console.time(`for`); let ...

  9. 常见算法的时间复杂度(大O计数法)

    定义 ​ 对于不同的机器环境而言,确切的单位时间是不同的,但是对于算法进行多少个基本操作(即花费多少时间单位)在规模数量级上却是相同的,由此可以忽略机器环境的影响而客观的反应算法的时间效率. 对于算法 ...

随机推荐

  1. python中csv模块和join函数的使用

    在看项目的时候恰好又碰到了这两个功能,然后稍微记录一下,关于join函数,是一个经常使用的联合函数,作用就是用自己规定的字符去串联字符串和列表之类的,对于字符串来说,join函数针对的是字符串中的每一 ...

  2. springboot引用三方jar包

    在springboot项目中可能会用到三方工具类(比如接入短信网关时给出的工具jar包),这时候需要在springboot项目中手动引入进来 1. springboot工程目录, lib/ucpaas ...

  3. SonarQube中三种类型的代码规则

    https://www.cnblogs.com/guoguochong/p/9117829.html 1.概述SonarQube(sonar)是一个 开源 平台,用于 管理 源代码的 质量 . Son ...

  4. ubuntu---对比工具Meld

    Beyond Compare是商业软件,下载地址:http://www.scootersoftware.com/download.php.下载完直接运行或者通过dpkg安装即可. 其实Linux下文本 ...

  5. 0030redis主从复制以及哨兵模式的搭建

    ------------------------------redis主从备份以及哨兵模式------------------------------------------------------- ...

  6. 《你们都是魔鬼吗》实验十二 团队作业八:Alpha冲刺

    <你们都是魔鬼吗>第八次团队作业:Alpha冲刺 项目 内容 这个作业属于哪个课程 任课教师博客主页链接 这个作业的要求在哪里 作业链接地址 团队名称 你们都是魔鬼吗 作业学习目标 软件测 ...

  7. Dynamics 365 on-premises 安装

    安装Dynamics 365环境配置要求: 系统版本:Windows Server 2016 SQL 版本: Microsoft SQL Server 2016 SP2 Dynamics 365 版本 ...

  8. C int类型的数组在内存中的地址示例

    #include <stdio.h> int main(void){ int age[5] = {5,6,7,20,99}; return 0; } //转换后 /*(gdb) p &am ...

  9. 汇编语言DOSBox软件使用方法

    https://wenku.baidu.com/view/e63b8b46ccbff121dc368305.html

  10. golang 斐波那契数

    golang 斐波那契数 package main import "fmt" /* 斐波那契数,亦称之为斐波那契数列(意大利语: Successione di Fibonacci) ...