【持续更新】

为了简便:import librosa

display

specshow(data[, x_coords, y_coords, x_axis, …]) Display a spectrogram/chromagram/cqt/etc.
waveplot(y[, sr, max_points, x_axis, …]) Plot the amplitude envelope of a waveform.
cmap(data[, robust, cmap_seq, cmap_bool, …]) Get a default colormap from the given data.
TimeFormatter([lag, unit]) A tick formatter for time axes.
NoteFormatter([octave, major]) Ticker formatter for Notes
LogHzFormatter([major]) Ticker formatter for logarithmic frequency
ChromaFormatter A formatter for chroma axes
TonnetzFormatter A formatter for tonnetz axes

[1]中介绍了很多关于librosa的应用,同时提出librosa.display模块并不默认包含在librosa中,使用时要单独引入:

import librosa.display

waveplot

Plot the amplitude envelope of a waveform.

If y is monophonic, a filled curve is drawn between [-abs(y), abs(y)].

If y is stereo, the curve is drawn between [-abs(y[1]), abs(y[0])], so that the left and right channels are drawn above and below the axis, respectively.

Long signals (duration >= max_points) are down-sampled to at most max_sr before plotting.

librosa.display.waveplot(y, sr=22050, max_points=50000.0, x_axis='time', offset=0.0, max_sr=1000, ax=None, **kwargs)

specshow

Display a spectrogram/chromagram/cqt/etc.

librosa.display.specshow(data, x_coords=None, y_coords=None, x_axis=None, y_axis=None, sr=22050, hop_length=512, fmin=None, fmax=None, tuning=0.0, bins_per_octave=12, ax=None, **kwargs)

注意:源码中 sr 默认是22050Hz,如果音频文件是8k或者16k,一定要指定采样率。

可以选择不同的尺度显示频谱图,y_axis={‘linear’, ‘log’, ‘mel’, ‘cqt_hz’,...}

stft / istft

短时傅里叶变换 / 逆短时傅里叶变换,参考librosa源码博客[librosa语音信号处理]

librosa.stft(y, n_fft=2048, hop_length=None, win_length=None, window='hann', center=True, pad_mode='reflect')

librosa.core.stft(y, n_fft=2048, hop_length=None, win_length=None, window='hann', center=True, dtype=<class 'numpy.complex64'>, pad_mode='reflect')   # This function caches at level 20.

The STFT represents a signal in the time-frequency domain by computing discrete Fourier transforms (DFT) over short overlapping windows. This function returns a complex-valued matrix D such that

  • np.abs(D[f, t]) is the magnitude of frequency bin f at frame t, and
  • np.angle(D[f, t]) is the phase of frequency bin f at frame t.
Parameters:
y : np.ndarray [shape=(n,)], real-valued

input signal

n_fft : int > 0 [scalar]

length of the windowed signal after padding with zeros. The number of rows in the STFT matrix D is (1 + n_fft/2). The default value, n_fft=2048 samples, corresponds to a physical duration of 93 milliseconds at a sample rate of 22050 Hz, i.e. the default sample rate in librosa. This value is well adapted for music signals. However, in speech processing, the recommended value is 512, corresponding to 23 milliseconds at a sample rate of 22050 Hz. In any case, we recommend setting n_fft to a power of two for optimizing the speed of the fast Fourier transform (FFT) algorithm.

hop_length : int > 0 [scalar]

number of audio samples between adjacent STFT columns.

Smaller values increase the number of columns in D without affecting the frequency resolution of the STFT.

If unspecified, defaults to win_length / 4 (see below).

win_length : int <= n_fft [scalar]

Each frame of audio is windowed by window() of length win_length and then padded with zeros to match n_fft.

Smaller values improve the temporal resolution of the STFT (i.e. the ability to discriminate impulses that are closely spaced in time) at the expense of frequency resolution (i.e. the ability to discriminate pure tones that are closely spaced in frequency). This effect is known as the time-frequency localization tradeoff and needs to be adjusted according to the properties of the input signal y.

If unspecified, defaults to win_length = n_fft.

window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)]

Either:

  • a window specification (string, tuple, or number); see scipy.signal.get_window
  • a window function, such as scipy.signal.hanning
  • a vector or array of length n_fft

Defaults to a raised cosine window (“hann”), which is adequate for most applications in audio signal processing.

center : boolean

If True, the signal y is padded so that frame D[:, t] is centered at y[t * hop_length].

If False, then D[:, t] begins at y[t * hop_length].

Defaults to True, which simplifies the alignment of D onto a time grid by means of librosa.core.frames_to_samples. Note, however, that center must be set to False when analyzing signals with librosa.stream.

dtype : numeric type

Complex numeric type for D. Default is single-precision floating-point complex (np.complex64).

pad_mode : string or function

If center=True, this argument is passed to np.pad for padding the edges of the signal y. By default (pad_mode=”reflect”), y is padded on both sides with its own reflection, mirrored around its first and last sample respectively. If center=False, this argument is ignored.

Returns:
D : np.ndarray [shape=(1 + n_fft/2, n_frames), dtype=dtype]

Complex-valued matrix of short-term Fourier transform coefficients.


librosa.istft(stft_matrix, hop_length=None, win_length=None, window='hann', center=True, length=None)

librosa.core.istft(stft_matrix, hop_length=None, win_length=None, window='hann', center=True, dtype=<class 'numpy.float32'>, length=None)       # This function caches at level 30.

Converts a complex-valued spectrogram stft_matrix to time-series y by minimizing the mean squared error between stft_matrix and STFT of y as described in [2] up to Section 2 (reconstruction from MSTFT).

In general, window function, hop length and other parameters should be same as in stft, which mostly leads to perfect reconstruction of a signal from unmodified stft_matrix.

Parameters:
stft_matrix : np.ndarray [shape=(1 + n_fft/2, t)]

STFT matrix from stft

hop_length : int > 0 [scalar]

Number of frames between STFT columns. If unspecified, defaults to win_length / 4.

win_length : int <= n_fft = 2 * (stft_matrix.shape[0] - 1)

When reconstructing the time series, each frame is windowed and each sample is normalized by the sum of squared window according to the window function (see below).

If unspecified, defaults to n_fft.

window : string, tuple, number, function, np.ndarray [shape=(n_fft,)]
  • a window specification (string, tuple, or number); see scipy.signal.get_window
  • a window function, such as scipy.signal.hanning
  • a user-specified window vector of length n_fft
center : boolean
  • If True, D is assumed to have centered frames.
  • If False, D is assumed to have left-aligned frames.
dtype : numeric type

Real numeric type for y. Default is 32-bit float.

length : int > 0, optional

If provided, the output y is zero-padded or clipped to exactly length samples.

Returns:
y : np.ndarray [shape=(n,)]

time domain signal reconstructed from stft_matrix

有用的函数

effects.split

librosa.effects.split(y, top_db=60, ref=<function amax at 0x7fa274a61d90>, frame_length=2048, hop_length=512)

Split an audio signal into non-silent intervals. 参数说明源码

Parameters:
y : np.ndarray, shape=(n,) or (2, n)

An audio signal

top_db : number > 0

The threshold (in decibels) below reference to consider as silence

ref : number or callable

The reference power. By default, it uses np.max and compares to the peak power in the signal.

frame_length : int > 0

The number of samples per analysis frame

hop_length : int > 0

The number of samples between analysis frames

Returns:
intervals : np.ndarray, shape=(m, 2)

intervals[i] == (start_i, end_i) are the start and end time (in samples) of non-silent interval i.

参考

[1] https://www.cnblogs.com/xingshansi/p/6816308.html

[2] D. W. Griffin and J. S. Lim, “Signal estimation from modified short-time Fourier transform,” IEEE Trans. ASSP, vol.32, no.2, pp.236–243, Apr. 1984.

【librosa】及其在音频处理中的应用的更多相关文章

  1. 音频采样中left-or right-justified(左对齐,右对齐), I2S时钟关系

    音频采样中left-or right-justified(左对齐,右对齐), I2S时钟关系 原创 2014年02月11日 13:56:51 4951 0 0 刚刚过完春节,受假期综合症影响脑袋有点发 ...

  2. 音频处理中的尺度--Bark尺度与Mel尺度

    由于人耳对声音的感知(如:频率.音调)是非线性的,为了对声音的感知进行度量,产生了一系列的尺度(如:十二平均律),这里重点说下Bark尺度与Mel尺度.刚开始的时候,我自己也没弄明白这两个尺度的区别. ...

  3. AEC、AGC、ANS在视音频会议中的作用?

    AGC是自动增益补偿功能(Automatic Gain Control),AGC可以自动调麦克风的收音量,使与会者收到一定的音量水平,不会因发言者与麦克风的距离改变时,声音有忽大忽小声的缺点.ANS是 ...

  4. 数据处理一条龙!这15个Python库不可不知

    如果你是一名数据科学家或数据分析师,或者只是对这一行业感兴趣,那下文中这些广受欢迎且非常实用的Python库你一定得知道. 从数据收集.清理转化,到数据可视化.图像识别和网页相关,这15个Python ...

  5. 测试开发之前端——No9.HTML5中的视频/音频

    HTML5 视频和音频的 DOM 参考手册 HTML5 DOM 为 <audio> 和 <video> 元素提供了方法.属性和事件. 这些方法.属性和事件允许您使用 JavaS ...

  6. 音频中PCM的概念

    本文取自由http://blog.csdn.net/droidphone一部分 1. PCM是什么 PCM是英文Pulse-code modulation的缩写,中文译名是脉冲编码调制.我们知道在现实 ...

  7. html5中audio支持音频格式

    HTML5 Audio标签能够支持wav, mp3, ogg, acc, webm等格式,但有个很重要的音乐文件格式midi(扩展名mid)却在各大浏览器中都没有内置的支持.不是所有的浏览器都支持MP ...

  8. librosa语音信号处理

    librosa是一个非常强大的python语音信号处理的第三方库,本文参考的是librosa的官方文档,本文主要总结了一些重要,对我来说非常常用的功能.学会librosa后再也不用用python去实现 ...

  9. WAVE音频格式及及转换代码

    音频信号的读写.播放及录音 python已经支持WAV格式的书写,而实时的声音输入输出需要安装pyAudio(http://people.csail.mit.edu/hubert/pyaudio).最 ...

随机推荐

  1. SpringBoot+EventBus使用教程(二)

    简介 继续上篇,本篇文章介绍如何集成spring-boot-starter-guava-eventbus使用EventBus,最新的版本好像已经不叫spring-boot-starter-guava- ...

  2. 如何修改SQL Server 2008 R2数据库的内存

    本篇经验将和大家介绍如何修改SQL Server 2008 R2数据库的内存,希望对大家的工作和学习有所帮助! 工具/原料   SQL Sever 2008 R2数据库已安装 方法/步骤   1 打开 ...

  3. mqtt数据采集器

    MQTT是一种发布(publish)/订阅(subscribe)协议,MQTT协议采用发布/订阅模式,所有的物联网终端都通过TCP连接到云端,云端通过主题的方式管理各个设备关注的通讯内容,负责将设备与 ...

  4. mgcp的alg功能实现

    刚吃了一碗还算正宗的潮汕牛筋丸粿条和一颗卤蛋,算是给自己的生日礼物. 这一周工作只围绕了一个主题“mgcp的alg功能实现”. 1. 应用场景: 一台运行mgcp语音协议的终端设备,经过一台路由器到达 ...

  5. 笔记本CPU性能排行

    截图如下: 1. 图1 2. 图2 3. 4. 5. 6. 7. 8. 谢谢浏览!

  6. Docker安装及简单使用

    1.docker安装 #1.检查内核版本,必须是3.10及以上 uname -r #2.安装 yum -y install docker 2.docker简单使用 #1.启动docker system ...

  7. SuRF : Practical Range Query Filtering with Fast Succinct Tries

    1. Introduction 在数据库管理系统中查找某些关键字会导致很大的磁盘I/O开销,针对这一问题,通常会使用一个内存开销小并且常驻内存的过滤器来检测该关键字是否存.比如现在常用的bloom过滤 ...

  8. Power BI连接Oracle的注意事项

    开始 Power BI 连接Oracle需要安装对应位数的ODAC,这个过程中有几个点要注意. ODAC 12c.x 版本(32.64),在安装时要将GAC的勾搭上.否则打开Power BI时会提示找 ...

  9. 初学Mybatis

    首先配置mybatis配置文件 <!DOCTYPE configuration PUBLIC "-//mybatis.org//DTD Config 3.0//EN" &qu ...

  10. 学习笔记之UML ( Unified Modeling Language )

    Unified Modeling Language - Wikipedia https://en.wikipedia.org/wiki/Unified_Modeling_Language The Un ...