train_test_split是sklearn中用于划分数据集,即将原始数据集划分成测试集和训练集两部分的函数。

from sklearn.model_selection import train_test_split

1. 其函数源代码是:

def train_test_split(*arrays, **options):
"""Split arrays or matrices into random train and test subsets Quick utility that wraps input validation and
``next(ShuffleSplit().split(X, y))`` and application to input data
into a single call for splitting (and optionally subsampling) data in a
oneliner. Read more in the :ref:`User Guide <cross_validation>`. Parameters
----------
*arrays : sequence of indexables with same length / shape[0]
Allowed inputs are lists, numpy arrays, scipy-sparse
matrices or pandas dataframes. test_size : float, int, None, optional
If float, should be between 0.0 and 1.0 and represent the proportion
of the dataset to include in the test split. If int, represents the
absolute number of test samples. If None, the value is set to the
complement of the train size. By default, the value is set to 0.25.
The default will change in version 0.21. It will remain 0.25 only
if ``train_size`` is unspecified, otherwise it will complement
the specified ``train_size``. train_size : float, int, or None, default None
If float, should be between 0.0 and 1.0 and represent the
proportion of the dataset to include in the train split. If
int, represents the absolute number of train samples. If None,
the value is automatically set to the complement of the test size. random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`. shuffle : boolean, optional (default=True)
Whether or not to shuffle the data before splitting. If shuffle=False
then stratify must be None. stratify : array-like or None (default is None)
If not None, data is split in a stratified fashion, using this as
the class labels. Returns
-------
splitting : list, length=2 * len(arrays)
List containing train-test split of inputs. .. versionadded:: 0.16
If the input is sparse, the output will be a
``scipy.sparse.csr_matrix``. Else, output type is the same as the
input type.

2. 参数

train_size:训练集大小

  float:0-1之间,表示训练集所占的比例

  int:直接指定训练集的数量

  None:自动为测试集的补集,也就是原始数据集减去测试集

test_size:测试集大小,默认值是0.25

  float:0-1之间,表示测试集所占的比例

  int:直接指定测试集的数量

  None:自动为训练集的补集,也就是原始数据集减去训练集

random_state:可以理解为随机数种子,主要是为了复现结果而设置

shuffle:表示是否打乱数据位置,True或者False,默认是True

stratify:表示是否按照样本比例(不同类别的比例)来划分数据集,例如原始数据集 类A:类B = 75%:25%,那么划分的测试集和训练集中的A:B的比例都会是75%:25%;可用于样本类别差异很大的情况,一般使用为:stratify=y,即用数据集的标签y来进行划分。

3. 一般使用形式是:

X_train,X_test,y_train,y_test = train_test_split(X,y,train_size = 0.75, random_state=14, stratify=y)

参考:

https://blog.csdn.net/liuxiao214/article/details/79019901

https://blog.csdn.net/qq_38410428/article/details/94054920

sklearn.model_selection 的train_test_split方法和参数的更多相关文章

  1. sklearn.model_selection 的 train_test_split作用

    train_test_split函数用于将数据划分为训练数据和测试数据. train_test_split是交叉验证中常用的函数,功能是从样本中随机的按比例选取train_data和test_data ...

  2. sklearn中的train_test_split (随机划分训练集和测试集)

    官方文档:http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html ...

  3. sklearn评估模型的方法

    一.acc.recall.F1.混淆矩阵.分类综合报告 1.准确率 第一种方式:accuracy_score # 准确率import numpy as np from sklearn.metrics ...

  4. sklearn 标准化数据的方法

    Sklearn 标准化数据 from __future__ import print_function from sklearn import preprocessing import numpy a ...

  5. No module named ‘sklearn.model_selection解决办法

    在python中运行导入以下模块 from sklearn.model_selection import train_test_split 出现错误:  No module named ‘sklear ...

  6. [Python]-sklearn.model_selection模块-处理数据集

    拆分数据集train&test from sklearn.model_selection import train_test_split 可以按比例拆分数据集,分为train和test x_t ...

  7. sklearn的train_test_split()各函数参数含义解释(非常全)

    sklearn之train_test_split()函数各参数含义(非常全) 在机器学习中,我们通常将原始数据按照比例分割为“测试集”和“训练集”,从 sklearn.model_selection ...

  8. 深度学习 | sklearn的train_test_split()各函数参数含义解释(超级全)

    在机器学习中,我们通常将原始数据按照比例分割为"测试集"和"训练集",从 sklearn.model_selection 中调用train_test_split ...

  9. sklearn.model_selection模块

    后续补代码 sklearn.model_selection模块的几个方法参数

随机推荐

  1. python初级(302) 7 列表(二)冒泡排序

    一.复习: 1.如何创建一个空列表,如何创建一个有数据的列表 2.列表可以包含的内容 3.从列表中获取元素和修改元素的方法 4.列表的分片 5.增加元素和删除元素 6.选择排序的算法: 一堆数据,每次 ...

  2. Prometheus监控教程——从入门到放弃

    Prometheus的安装还是比较简单的 下载地址如下 https://prometheus.io/download/ 解压,修改配置,运行.默认监听9090端口 [root@localhost ~] ...

  3. mvn-dependencies-vs-dependencyManagement

    dependencyManagement里只是声明依赖,并不实现引入,因此子项目需要显式的声明需要用的依赖. dependencies 相对于dependencyManagement,所有声明在dep ...

  4. c++动态链接问题

    https://blog.csdn.net/liu0808/article/details/81169173 https://blog.csdn.net/f110300641/article/deta ...

  5. Ubuntu下安装与卸载opencv模块

    opencv安装 因工程需要,想在python中调用opencv import cv2 现在记录一下如何在Linux系统(ubutun)下安装该模块: 参考了一篇博客:http://blog.csdn ...

  6. 实用———springmvc接收参数校验

    https://www.cnblogs.com/funyoung/p/8670550.html https://www.cnblogs.com/monkeydai/p/10068547.html He ...

  7. Idea打jar包(包含依赖的jar)

    项目右键 ---> Open Module Settings 如下选择,点击OK 点击OK退出! 在Intellij Idea的菜单栏中依次选择“Build -> Build Artifa ...

  8. SpringBoot应用部署到Docker上(docker-io版本)

    配置TCP远程连接 为什么要配置这个呢,因为用到的docker-maven-plugin插件默认连接到localhost:2375上的docker.然而:1. 我们的Docker不在本地,执行打包命令 ...

  9. Hyperledger Fabric 入门 first-network 搭建

    1.准备环境: 安装git.docker.curl.go [root@test_vonedao_83 fabric]# git --version git version 1.8.3.1 [root@ ...

  10. 列表,元组以及range

    列表,元组以及range 一.列表(list) 列表是数据类型之一,它有序,可变,支持索引 作用:存储数据,支持的数据类型很多:字符串,数字,布尔值,列表等 # 定义一个列表 lst = ['alex ...