这是一个完整的程序,值得保存

1、对图片进行预处理并保存
import glob
import os.path
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import gfile # 原始输入数据的目录,这个目录下有5个子目录,每个子目录底下保存这属于该
# 类别的所有图片。
INPUT_DATA = './dataset/flower_photos'
# 输出文件地址。我们将整理后的图片数据通过numpy的格式保存。
OUTPUT_FILE = './dataset/flower_processed_data.npy' # 这里教你怎么生成.npy文件 # 测试数据和验证数据比例。 VALIDATION_PERCENTAGE = 10
TEST_PERCENTAGE = 10 # 读取数据并将数据分割成训练数据、验证数据和测试数据。
def create_image_lists(sess, testing_percentage, validation_percentage):
sub_dirs = [x[0] for x in os.walk(INPUT_DATA)] # 通过在目录树中游走,输出目录中的文件名
# sub_dirs里包含['./dataset/flower_photos', './dataset/flower_photos\\daisy',
# './dataset/flower_photos\\dandelion', './dataset/flower_photos\\roses',
# './dataset/flower_photos\\sunflowers', './dataset/flower_photos\\tulips']
is_root_dir = True # 初始化各个数据集。
training_images = []
training_labels = []
testing_images = []
testing_labels = []
validation_images = []
validation_labels = []
current_label = 0 # 读取所有的子目录。
for sub_dir in sub_dirs:
if is_root_dir:
is_root_dir = False
continue # 获取一个子目录中所有的图片文件。
extensions = ['jpg', 'jpeg', 'JPG', 'JPEG']
file_list = []
dir_name = os.path.basename(sub_dir) # 得到的是从后往前数第一个名,也就是daisy、dandelion等名字
for extension in extensions:
file_glob = os.path.join(INPUT_DATA, dir_name, '*.' + extension) # 用*做模糊匹配
file_list.extend(glob.glob(file_glob))
if not file_list: continue
print("processing:", dir_name) i = 0
# 处理图片数据。
for file_name in file_list: # 都是在张量下处理数据
i += 1
# 读取并解析图片,将图片转化为299*299以方便inception-v3模型来处理。
image_raw_data = gfile.FastGFile(file_name, 'rb').read()
image = tf.image.decode_jpeg(image_raw_data)
if image.dtype != tf.float32:
image = tf.image.convert_image_dtype(image, dtype=tf.float32) # 将像素值从[0, 255]转换到[0, 1]
image = tf.image.resize_images(image, [229, 229])
image_value = sess.run(image) # 记得要run一下 # 随机划分数据聚。
chance = np.random.randint(100)
if chance < validation_percentage:
validation_images.append(image_value)
validation_labels.append(current_label)
elif chance < (testing_percentage + validation_percentage):
testing_images.append(image_value)
testing_labels.append(current_label)
else:
training_images.append(image_value)
training_labels.append(current_label)
if i % 200 == 0:
print(i, "images processed.")
current_label += 1 # 将训练数据随机打乱以获得更好的训练效果。
state = np.random.get_state()
np.random.shuffle(training_images)
np.random.set_state(state)
np.random.shuffle(training_labels) return np.asarray([training_images, training_labels,
validation_images, validation_labels,
testing_images, testing_labels]) with tf.Session() as sess:
processed_data = create_image_lists(sess, TEST_PERCENTAGE, VALIDATION_PERCENTAGE)
# 通过numpy格式保存处理后的数据。
np.save(OUTPUT_FILE, processed_data) # 记住这里的np形式,将处理的图片保存到.npy文件
2、进行迁移学习
import numpy as np
import tensorflow as tf
import tensorflow.contrib.slim as slim
import tensorflow.contrib.slim.python.slim.nets.inception_v3 as inception_v3 # 处理好之后的数据文件。
INPUT_DATA = '../../dataset/flower_processed_data.npy'
# 保存训练好的模型的路径。
TRAIN_FILE = 'train_dir/model' CKPT_FILE = '../../dataset/inception_v3.ckpt' # 定义训练中使用的参数。
LEARNING_RATE = 0.0001
STEPS = 300
BATCH = 32
N_CLASSES = 5 # 不需要从谷歌训练好的模型中加载的参数。
CHECKPOINT_EXCLUDE_SCOPES = 'InceptionV3/Logits,InceptionV3/AuxLogits' # 需要训练的网络层参数明层,在fine-tuning的过程中就是最后的全联接层。
TRAINABLE_SCOPES='InceptionV3/Logits,InceptionV3/AuxLogit' def get_tuned_variables():
exclusions = [scope.strip() for scope in CHECKPOINT_EXCLUDE_SCOPES.split(',')]
variables_to_restore = []
# 枚举inception-v3模型中所有的参数,然后判断是否需要从加载列表中移除。
for var in slim.get_model_variables():
excluded = False
for exclusion in exclusions:
if var.op.name.startswith(exclusion):
excluded = True
break
if not excluded:
variables_to_restore.append(var)
return variables_to_restore def get_trainable_variables():
scopes = [scope.strip() for scope in TRAINABLE_SCOPES.split(',')]
variables_to_train = [] # 枚举所有需要训练的参数前缀,并通过这些前缀找到所有需要训练的参数。
for scope in scopes:
variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope)
variables_to_train.extend(variables)
return variables_to_train def main():
# 加载预处理好的数据。
processed_data = np.load(INPUT_DATA)
training_images = processed_data[0]
n_training_example = len(training_images)
training_labels = processed_data[1] validation_images = processed_data[2]
validation_labels = processed_data[3] testing_images = processed_data[4]
testing_labels = processed_data[5]
print("%d training examples, %d validation examples and %d testing examples." % (
n_training_example, len(validation_labels), len(testing_labels))) # 定义inception-v3的输入,images为输入图片,labels为每一张图片对应的标签。
images = tf.placeholder(tf.float32, [None, 299, 299, 3], name='input_images')
labels = tf.placeholder(tf.int64, [None], name='labels') # 定义inception-v3模型。因为谷歌给出的只有模型参数取值,所以这里
# 需要在这个代码中定义inception-v3的模型结构。虽然理论上需要区分训练和
# 测试中使用到的模型,也就是说在测试时应该使用is_training=False,但是
# 因为预先训练好的inception-v3模型中使用的batch normalization参数与
# 新的数据会有出入,所以这里直接使用同一个模型来做测试。
with slim.arg_scope(inception_v3.inception_v3_arg_scope()):
logits, _ = inception_v3.inception_v3(
images, num_classes=N_CLASSES, is_training=True) trainable_variables = get_trainable_variables()
# 定义损失函数和训练过程。
tf.losses.softmax_cross_entropy(
tf.one_hot(labels, N_CLASSES), logits, weights=1.0)
total_loss = tf.losses.get_total_loss()
train_step = tf.train.RMSPropOptimizer(LEARNING_RATE).minimize(total_loss) # 计算正确率。
with tf.name_scope('evaluation'):
correct_prediction = tf.equal(tf.argmax(logits, 1), labels)
evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 定义加载Google训练好的Inception-v3模型的Saver。
load_fn = slim.assign_from_checkpoint_fn(
CKPT_FILE,
get_tuned_variables(),
ignore_missing_vars=True) # 定义保存新模型的Saver。
saver = tf.train.Saver() with tf.Session() as sess:
# 初始化没有加载进来的变量。
init = tf.global_variables_initializer()
sess.run(init) # 加载谷歌已经训练好的模型。
print('Loading tuned variables from %s' % CKPT_FILE)
load_fn(sess) start = 0
end = BATCH
for i in range(STEPS):
_, loss = sess.run([train_step, total_loss], feed_dict={
images: training_images[start:end],
labels: training_labels[start:end]}) if i % 30 == 0 or i + 1 == STEPS: # 最后一步的参数一定要保存
saver.save(sess, TRAIN_FILE, global_step=i) # 保存新的ckpt文件 validation_accuracy = sess.run(evaluation_step, feed_dict={
images: validation_images, labels: validation_labels})
print('Step %d: Training loss is %.1f Validation accuracy = %.1f%%' % (
i, loss, validation_accuracy * 100.0)) start = end
if start == n_training_example:
start = 0 end = start + BATCH
if end > n_training_example:
end = n_training_example # 在最后的测试数据上测试正确率。
test_accuracy = sess.run(evaluation_step, feed_dict={
images: testing_images, labels: testing_labels})
print('Final test accuracy = %.1f%%' % (test_accuracy * 100))

Tensorflow细节-P160-迁移学习的更多相关文章

  1. 迁移学习-Transfer Learning

    迁移学习两种类型: ConvNet as fixed feature extractor:利用在大数据集(如ImageNet)上预训练过的ConvNet(如AlexNet,VGGNet),移除最后几层 ...

  2. 用tensorflow迁移学习猫狗分类

    笔者这几天在跟着莫烦学习TensorFlow,正好到迁移学习(至于什么是迁移学习,看这篇),莫烦老师做的是预测猫和老虎尺寸大小的学习.作为一个有为的学生,笔者当然不能再预测猫啊狗啊的大小啦,正好之前正 ...

  3. TensorFlow从1到2(九)迁移学习

    迁移学习基本概念 迁移学习是这两年比较火的一个话题,主要原因是在当前的机器学习中,样本数据的获取是成本最高的一块.而迁移学习可以有效的把原有的学习经验(对于模型就是模型本身及其训练好的权重值)带入到新 ...

  4. TensorFlow迁移学习的识别花试验

    最近学习了TensorFlow,发现一个模型叫vgg16,然后搭建环境跑了一下,觉得十分神奇,而且准确率十分的高.又上了一节选修课,关于人工智能,老师让做一个关于人工智能的试验,于是觉得vgg16很不 ...

  5. 第二十四节,TensorFlow下slim库函数的使用以及使用VGG网络进行预训练、迁移学习(附代码)

    在介绍这一节之前,需要你对slim模型库有一些基本了解,具体可以参考第二十二节,TensorFlow中的图片分类模型库slim的使用.数据集处理,这一节我们会详细介绍slim模型库下面的一些函数的使用 ...

  6. 『TensorFlow』迁移学习

    完全版见github:TransforLearning 零.迁移学习 将一个领域的已经成熟的知识应用到其他的场景中称为迁移学习.用神经网络的角度来表述,就是一层层网络中每个节点的权重从一个训练好的网络 ...

  7. 1 如何使用pb文件保存和恢复模型进行迁移学习(学习Tensorflow 实战google深度学习框架)

    学习过程是Tensorflow 实战google深度学习框架一书的第六章的迁移学习环节. 具体见我提出的问题:https://www.tensorflowers.cn/t/5314 参考https:/ ...

  8. Google Tensorflow 迁移学习 Inception-v3

    附上代码加数据地址 https://github.com/Liuyubao/transfer-learning ,欢迎参考. 一.Inception-V3模型 1.1 详细了解模型可参考以下论文: [ ...

  9. tensorflow实现迁移学习

    此例程出自<TensorFlow实战Google深度学习框架>6.5.2小节 卷积神经网络迁移学习. 数据集来自http://download.tensorflow.org/example ...

随机推荐

  1. JVM——java内存模型和线程

    概述 计算机的运算速度与它的存储和通信子系统速度的差距太大,大量的时间都花费在磁盘I/O.网络通信或者数据库访问上.我们当然不希望处理器大部分时间都处于等待其他资源的状态,要通过一些“手段”去把处理器 ...

  2. Python-12-装饰器

    一.定义 器即函数 装饰即修饰,意指为其他函数添加新功能 装饰器定义:本质就是函数,功能是为其他函数添加新功能 原则: 1.不修改被装饰函数的源代码(开放封闭原则) 2.为被装饰函数添加新功能后,不修 ...

  3. Ubuntu遇到apt-get update报错:"E: Could not get lock /var/lib/apt/lists/lock"

    sudo apt-get update报错:"E: Could not get lock /var/lib/apt/lists/lock" 出现此问题的原因可能是有另外一个程序在运 ...

  4. jwt 0.9.0 系列目录

    jwt官网地址:https://jwt.io/ PS: 写此系列的时候,jjwt jar包版本是0.9.0 <dependency>    <groupId>io.jsonwe ...

  5. Node模块化

    Node.js是一个能够在服务器端运行JavaScript的开放源代码.跨平台JavaScript运行环境.Node是对ES标准一个实现,也是一个JS引擎.与传统服务器不同是Node的服务器是单线程的 ...

  6. Mysql之锁的基本介绍

    数据库锁定机制简单来说,就是数据库为了保证数据的一致性,而使各种共享资源在被并发访问变得有序所设计的一种规则.对于任何一种数据库来说都需要有相应的锁定机制,所以MySQL自然也不能例外.MySQL数据 ...

  7. c# 基于委托的异步编程模型(APM)测试用例

    很多时候,我们需要程序在执行某个操作完成时,我们能够知道,以便进行下一步操作. 但是在使用原生线程或者线程池进行异步编程,没有一个内建的机制让你知道操作什么时候完成,为了克服这些限制,基于委托的异步编 ...

  8. DuplexChannel

    [ServiceContract(Namespace = "http://xx.com", CallbackContract = typeof(Ipub_c))] public i ...

  9. 7.1 为什么bulk使用奇特的json格式?

    回顾: bulk的语法要求:每个json串都不能换行,不同json串之间,必须换行   为什么不用标准json数组呢?如: [     {         "create":{.. ...

  10. 解决SecureCRT 中文乱码??

    在linux服务器上搭建solr,用的是SecureCRT  连接linux服务器,发现不能输入中文,配置文件中的中文也是乱码:先以为是SecureCRT工具编码的问题,把编码改成utf-8之后发现还 ...