PROJECT 03-01 : Image Enhancement Using Intensity Transformations

实验要求:

Objective

To manipulate a technique of image enhancement by intensity transformation or gray level transformation.

Main requirements:

Ability of programming with C, C++, or Matlab.

Instruction manual:

The focus of this project is to experiment with intensity transformations to enhance an image. Download Fig. 3.8(a) and enhance it using

(a) The log transformation of Eq. (3.2-2).

(b) A power-law transformation of the form shown in Eq. (3.2-3).

In (a) the only free parameter is c, but in (b) there are two parameters, c and r for which values have to be selected. As in most enhancement tasks, experimentation is a must. The objective of this project is to obtain the best visual enhancement possible with the methods in (a) and (b). Once (according to your judgment) you have the best visual result for each transformation, explain the reasons for the major differences between them.

实验代码:


clear all
clc
close all % read image
img_gray = imread('Fig4.28(a).jpg'); % img_gray = rgb2gray(img); figure(1)
subplot(1, 2, 1);
imshow(img_gray);
title('original'); % log transformation
t1 = log(1+double(img_gray)); % Description of mat2gray:
% I = mat2gray(A, [amin amax]) converts the matrix A to the intensity image
% I. The returned matrix I contains values in the range 0.0 (black) to 1.0
% (full intensity or white). amin and amax are the values in A that correspond
% to 0.0 and 1.0 in I. Values less than amin become 0.0, and values greater
% than amax become 1.0.
t2 = mat2gray(t1); % Description of im2uint8:
% im2uint8 takes an image as input and returns an image of class uint8.
% If the input image is of class uint8, the output image is identical to
% the input image. If the input image is not uint8, im2uint8 returns the
% equivalent image of class uint8, rescaling or offsetting the data as necessary.
img1 = im2uint8(t2); subplot(1, 2, 2);
imshow(img1);
title('log transformation'); % power-law transformation
figure(2)
% subplot(2, 5, 1);
imshow(img_gray);
title('original'); img_t1 = double(img_gray);
cnt = 1;
pow = 0.1; for pow = 0.1:0.2:0.9
img_t2 = im2uint8(mat2gray(img_t1.^pow));
cnt = cnt + 1;
figure(1+cnt);
% subplot(2, 5, cnt);
imshow(img_t2);
% title('power-law:\gamma=');
gamma = sprintf('power-law:gamma=%.1f', pow);
title(gamma);
end

运行结果:

首先是原图像与做对数变换后的结果对比,随后是幂率变换的结果。程序中已有详细注释。

PROJECT 03-02 [Multiple Uses] : Histogram Equalization

实验要求:

Objective

To manipulate a technique of image enhancement by histogram equalization.

Main requirements:

Ability of programming with C, C++, or Matlab.

Instruction manual:

(a) Write a computer program for computing the histogram of an image.

(b) Implement the histogram equalization technique discussed in Section 3.3.1.

(c) Download Fig. 3.8(a) and perform histogram equalization on it.

As a minimum, your report should include the original image, a plot of its histogram, a plot of the histogram-equalization transformation function, the enhanced image, and a plot of its histogram. Use this information to explain why the resulting image was enhanced as it was.

简单点来说,实验中我们要进行直方图均衡化,可以调用MATLAB工具箱中的histeq函数。

上代码:


clear all;
clc;
close all; %%
img = imread('Boat512.bmp');
subplot(2,2,1);
imshow(img); subplot(2,2,2);
imhist(img); img1 = histeq(img,256);
subplot(2,2,3);
imshow(img1); subplot(2,2,4);
imhist(img1);

运行结果:



进行直方图均衡化之后,我们可以很明显地看到图像的对比度增强了。

PROJECT 03-03 [Multiple Uses] :Arithmetic Operations

实验要求:

Objective
To know how to do arithmetic operations on an image and the functions of some arithmetic operations.
Main requirements:
Ability of programming with C, C++, or Matlab.
Instruction manual:
Write a computer program capable of performing the four arithmetic operations between two images. This project is generic, in the sense that it will be used in other projects to follow. (See comments on pages 112 and 116 regarding scaling). In addition to multiplying two images, your multiplication function must be able to handle multiplication of an image by a constant.

实验中我们要对图像做算术运算,观察结果。

实验代码:

%
clear all;
clc;
close all; %
% img = imread('peppers_color.jpg');
% size = size(img);
% if numel(size) >= 2
% img = rgb2gray(img);
% imwrite(img,'gray_img.jpg');
% end
% clear size; % 读取原图像
img = imread('gray_img.jpg');
subplot(4,3,1);
imshow(img);
title('image 1'); % 反转灰度
img1 = 255 - img;
subplot(4,3,2);
imshow(img1);
title('image 2'); % 图像相加
img2 = imadd(img, img1);
subplot(4,3,3);
imshow(img2);
title('add'); % 图像相减
subplot(4,3,4);
imshow(img2);
title('image 1'); subplot(4,3,5);
imshow(img);
title('image 2'); img3 = imsubtract(img2, img);
subplot(4,3,6);
imshow(img3);
title('subtract'); % 图像相乘
subplot(4,3,7);
imshow(img);
title('image 1'); subplot(4,3,8);
imshow(img1);
title('image 2'); img4 = immultiply(img, img1);
subplot(4,3,9);
imshow(img4);
title('multiply'); %% 图像相除
subplot(4,3,10);
imshow(img4);
title('image 1'); subplot(4,3,11);
imshow(img1);
title('image 2'); img5 = imdivide(img4, img1);
subplot(4,3,12);
imshow(img5);
title('divide');

实验结果:

PROJECT 03-04 [Multiple Uses] : Spatial Filtering

实验要求:

Objective

To understand what is special filtering and how the parameters of the filtering mask affect the output of filters..

Main requirements:

Ability of programming with C, C++, or Matlab.

Instruction manual:

Write program to perform spatial filtering of an image (see Section 3.5 regarding implementation). You can fix the size of the spatial mask at 3 x 3, but the coefficients need to be variables that can be input into your program. This project is generic, in the sense that it will be used in other projects to follow.

使用3 x 3的滤波器模板,对图像进行空间滤波。程序中调用MATLAB的fspecial函数生成3 x 3滤波器模板。

%
close all;
clc;
clear all; %
img = imread('Fig5.10(a).jpg');
subplot(1,3,1);
imshow(img);
title('original'); % 均值滤波
% h = fspecial('average', hsize) returns an averaging filter h of size hsize.
% The argument hsize can be a vector specifying the number of rows and columns
% in h, or it can be a scalar, in which case h is a square matrix. The default
% value for hsize is [3 3].
h = fspecial('average',[3,3]); % 均值滤波器
img1 = imfilter(img, h);
subplot(1,3,2);
imshow(img1);
title('average filter'); % 中值滤波
% B = medfilt2(A) performs median filtering of the matrix A using the default
% 3-by-3 neighborhood.
img2 = medfilt2(img);
subplot(1,3,3);
imshow(img2);
title('median filter');

实验结果:

PROJECT 03-05 : Enhancement Using the Laplacian

实验要求:

Objective:

To further understand the well-known technique of Laplacian and how it works on an image.

Main requirements:

Ability of programming with C, C++, or Matlab.

Instruction manual:

(a) Use the programs developed in Projects 03-03 and 03-04 to implement the Laplacian enhancement technique described in connection with Eq. (3.7-5). Use the mask shown in Fig. 3.39(d).

(b) Duplicate the results in Fig. 3.40. You will need to download Fig. 3.40(a).

使用拉普拉斯算子对图片进行空间滤波。

实验代码:

%
close all;
clc;
clear all; %
img = imread('moon.jpg');
subplot(3, 1, 1);
imshow(img);
title('original'); %
h = fspecial('laplacian', 0.2);
img1 = imfilter(img, h);
subplot(3, 2, 3);
imshow(img1);
title('default laplacian'); %
w = [-1, -1, -1; -1, 8, -1; -1, -1, -1];
% 'replicate', 图像大小通过复制外边界的值来扩展
img2 = imfilter(img, w, 'replicate');
subplot(3, 2, 4);
imshow(img2);
title('mask'); %
img3 = img + img1;
subplot(3, 2, 5);
imshow(img3);
title('output1'); %
img4 = img + img2;
subplot(3, 2, 6);
imshow(img4);
title('output2');

实验结果:



可以看出使用拉普拉斯算子可以突出边缘,将其与原图像叠加便能增强边缘。左边的是使用fspecial生成拉普拉斯算子,右边的是直接输入的拉普拉斯算子模板,即:

w = [-1, -1, -1; -1, 8, -1; -1, -1, -1];
PROJECT 03-06 :Unsharp Masking

实验要求:

Objective:

To further understand image enhancement technique of unsharp masking and how it works on an image.

Main requirements:

Ability of programming with C, C++, or Matlab.

Instruction manual:

(a) Use the programs developed in Projects 03-03 and 03-04 to implement high-boost filtering, as given in Eq. (3.7-8). The averaging part of the process should be done using the mask in Fig. 3.34(a).

(b) Download Fig. 3.43(a) and enhance it using the program you developed in (a). Your objective is to choose constant A so that your result visually approximates Fig. 3.43(d).

非锐化掩蔽,使用前面实验的程序来实现增强滤波。

直接上程序:

%
close all;
clc;
clear all; %
img = imread('test.png');
figure(1);
subplot(2,2,1);
imshow(img);
title('original'); cnt = 1;
for alpha = [0.1 0.4 0.9]
h = fspecial('laplacian', alpha);
img_temp =imfilter(img, h);
img_out = img + img_temp;
cnt = cnt + 1;
subplot(2,2,cnt);
imshow(img_out);
title(['\alpha = ', num2str(alpha)]); % subplot(1, 2, 1);
% imshow(img_temp);
% title(['\alpha = ', num2str(alpha)]);
% subplot(1, 2, 2);
% imshow(img_out);
% title('output');
end

实验结果:

数字图像处理实验(5):Proj03-01 ~ Proj03-06 标签: 图像处理matlab 2017-04-30 10:39 184人阅读的更多相关文章

  1. 数字图像处理实验(总计23个)汇总 标签: 图像处理MATLAB 2017-05-31 10:30 175人阅读 评论(0)

    以下这些实验中的代码全部是我自己编写调试通过的,到此,最后进行一下汇总. 数字图像处理实验(1):PROJECT 02-01, Image Printing Program Based on Half ...

  2. 数字图像处理实验(17):PROJECT 06-04,Color Image Segmentation 标签: 图像处理MATLAB 2017-05-27 21:13

    实验报告: Objective: Color image segmentation is a big issue in image processing. This students need to ...

  3. Python web前端 01 HTML常用标签

    Python web前端 01 HTML常用标签 一.HTML创建项目 file ---->new project -----> 输入项目名------>创建文件夹 new dicr ...

  4. iOS系列 基础篇 06 标签和按钮 (Label & Button)

    iOS系列 基础篇 06 标签和按钮 (Label & Button) 目录: 标签控件 按钮控件 小结 标签和按钮是两个常用的控件,下面咱们逐一学习. 1. 标签控件 使用Single Vi ...

  5. http://www.liangxiansen.cn/2017/04/06/consul/

    Consul 使用手册 | 一个梦 http://www.liangxiansen.cn/2017/04/06/consul/ 基于Consul的分布式锁实现 https://mp.weixin.qq ...

  6. php图像处理(thinkphp框架有相对强大的图像处理功能)

    php图像处理(thinkphp框架有相对强大的图像处理功能) 一.总结 1.php处理图像:php处理图像需要安装外库(gd库) 2.gd库函数可以非常完美的操作图像:安装好库之后,这个库里面的函数 ...

  7. 085 01 Android 零基础入门 02 Java面向对象 01 Java面向对象基础 02 构造方法介绍 04 构造方法调用

    085 01 Android 零基础入门 02 Java面向对象 01 Java面向对象基础 02 构造方法介绍 04 构造方法调用 本文知识点:构造方法调用 说明:因为时间紧张,本人写博客过程中只是 ...

  8. 024 01 Android 零基础入门 01 Java基础语法 03 Java运算符 04 关系运算符

    024 01 Android 零基础入门 01 Java基础语法 03 Java运算符 04 关系运算符 本文知识点:Java中的关系运算符 关系运算符

  9. 016 01 Android 零基础入门 01 Java基础语法 02 Java常量与变量 10 布尔类型和字符串的字面值

    016 01 Android 零基础入门 01 Java基础语法 02 Java常量与变量 10 布尔类型和字符串的字面值 本文知识点:字面值 关于字面值的概念,需要注意:很多地方,我们可能就把字面值 ...

随机推荐

  1. 二维码的扫描和生成--第三方开源--ZXing

    ZXing的二维码功能的提取lib下载地址:https://github.com/xuyisheng/ZXingLib 1.扫描二维码: 我们扫描就是要用到这个CaptureActivity类,直接把 ...

  2. WinForm判断程序是否已经在运行,且只允许运行一个实例

    我们开发WinFrom程序,很多时候都希望程序只有一个实例在运行,避免运行多个同样的程序,一是没有意义,二是容易出错. 为了更便于使用,笔者整理了一段自己用的代码,可以判断程序是否在运行,只运行一个实 ...

  3. sql-多表查询JOIN与分组GROUP BY

    一.内部连接:两个表的关系是平等的,可以从两个表中获取数据.用ON表示连接条件 SELECT A.a,B.b FROM At AS A  INNER JOINT Bt AS B ON  A.m=B.n ...

  4. Linux运维工程师中级面试题

    1.解释top命令和vmstat命令 2.请写出iptables语句 3.mysql高可用方案有哪些?mysql备份方案有哪些?有什么缺点? 4.写出Apache 2.x的两种工作模式,以及各自的工作 ...

  5. CANopenSocket CANopenCGI.c hacking

    /**************************************************************************************** * CANopenS ...

  6. HDU - 5730 :Shell Necklace(CDQ分治+FFT)

    Perhaps the sea‘s definition of a shell is the pearl. However, in my view, a shell necklace with n b ...

  7. 使用window.print()后,未关闭打印页面,原网页不能操作

    使用window.print()后,未关闭打印页面,原网页不能操作,此时可以试着用window.location.reload()重新加载页面解决问题.

  8. Erlang pool management -- RabbitMQ worker_pool 2

    上一篇已经分析了rpool 的三个module , 以及简单的物理关系. 这次主要分析用户进程和 worker_pool 进程还有worker_pool_worker 进程之间的调用关系. 在开始之前 ...

  9. Python 中的0 和 1 的意思

    Python程序语言指定任何非0和非空(null)值为true,0 或者 null为false,所以Python中的 1 代表 True,0代表False

  10. mariaDB 安装/卸载+启动/关闭 服务

    1.设置环境变量 无论是用户环境变量还是系统环境变量 2.启动服务 进入根目录 名字根据 --install 后的 参数来决定 叫MariaDB,MySQL 都可以 mysqld.exe --inst ...