CodeForces - 906D Power Tower(欧拉降幂定理)
Power Tower
题目大意:有N个数字,然后给你q个区间,要你求每一个区间中所有的数字从左到右依次垒起来的次方的幂对m取模之后的数字是多少。
用到一个新知识,欧拉降幂定理
记住公式 $\LARGE n^x \equiv n^{\varphi(m)\ +\ x\ mod\ \varphi(m)}(mod\ m)$这个式子当且仅当x>φ(m)时满足。那么就可以递归求解了。
暂时不太明白怎么证明
#include<iostream>
#include<cstdio>
#include<cstring>
#include<map>
#define maxn 100010
#define Mod(a,b) a<b?a:a%b+b
using namespace std;
long long n,m,a[maxn];
map<long long,long long>p;
long long qread(){
long long i=,j=;
char ch=getchar();
while(ch<''||ch>''){if(ch=='-')j=-;ch=getchar();}
while(ch<=''&&ch>='')i=i*+ch-'',ch=getchar();
return i*j;
}
long long Pow(long long x,long long y,long long mod){
long long res=;
while(y){
if(y&)res=Mod(res*x,mod);
x=Mod(x*x,mod);
y>>=;
}
return res;
}
long long phi(long long k){
long long s=k,x=k;
if(p[k])return p[k];
for(long long i=;i*i<=k;i++){
if(k%i==)s=s/i*(i-);
while(k%i==)k/=i;
}
if(k>)s=s/k*(k-);
p[x]=s;return s;
}
long long solve(int l,int r,long long mod){
if(l==r||mod==)return Mod(a[l],mod);
return Pow(a[l],solve(l+,r,phi(mod)),mod);
}
int main(){
freopen("Cola.txt","r",stdin);
n=qread();m=qread();
for(int i=;i<=n;i++)a[i]=qread();
int Q;scanf("%d",&Q);
int l,r;
while(Q--){
scanf("%d%d",&l,&r);
cout<<solve(l,r,m)%m<<endl;
}
return ;
}
CodeForces - 906D Power Tower(欧拉降幂定理)的更多相关文章
- Codeforces Round #454 (Div. 1) CodeForces 906D Power Tower (欧拉降幂)
题目链接:http://codeforces.com/contest/906/problem/D 题目大意:给定n个整数w[1],w[2],……,w[n],和一个数m,然后有q个询问,每个询问给出一个 ...
- D - Power Tower欧拉降幂公式
题意:给你一个数组a,q次查询,每次l,r,要求 \(a_{l}^{a_{l+1}}^{a_{l+2}}...{a_r}\) 题解:由欧拉降幂可知,最多log次eu(m)肯定变1,那么直接暴力即可,还 ...
- [数学][欧拉降幂定理]Exponial
Exponial 题目 http://exam.upc.edu.cn/problem.php?cid=1512&pid=4 欧拉降幂定理:当b>phi(p)时,有a^b%p = a^(b ...
- Codeforces 906D Power Tower(欧拉函数 + 欧拉公式)
题目链接 Power Tower 题意 给定一个序列,每次给定$l, r$ 求$w_{l}^{w_{l+1}^{w_{l+2}^{...^{w_{r}}}}}$ 对m取模的值 根据这个公式 每次 ...
- [Codeforces]906D Power Tower
虽说是一道裸题,但还是让小C学到了一点姿势的. Description 给定一个长度为n的数组w,模数m和询问次数q,每次询问给定l,r,求: 对m取模的值. Input 第一行两个整数n,m,表示数 ...
- [CodeForces - 906D] Power Tower——扩展欧拉定理
题意 给你 $n$ 个 $w_i$ 和一个数 $p$,$q$个询问,每次询问一个区间 $[l,r] $,求 $w_l ^{w_{l+1}^{{\vdots}^{w_r}}} \ \% p$ 分析 由扩 ...
- Codeforces Round #454 D. Power Tower (广义欧拉降幂)
D. Power Tower time limit per test 4.5 seconds memory limit per test 256 megabytes input standard in ...
- Power Tower(广义欧拉降幂)
题意:https://codeforc.es/contest/906/problem/D 计算区间的: ai ^ ai+1 ^ ai+2.......ar . 思路: 广义欧拉降幂: 注意是自下而上递 ...
- Codeforces Round #536 (Div. 2) F 矩阵快速幂 + bsgs(新坑) + exgcd(新坑) + 欧拉降幂
https://codeforces.com/contest/1106/problem/F 题意 数列公式为\(f_i=(f^{b_1}_{i-1}*f^{b_2}_{i-2}*...*f^{b_k} ...
随机推荐
- linux apt-get remove如何恢复
linux卸载或删除软件时,若不小心删除到关联的软件,如果想撤销删除操作需要在/var/log/apt/history.log中依次安装删除的软件,具体操作如下: $echo '#!/bin/bash ...
- freeMarker(九)——程序开发指南补充知识
学习笔记,选自freeMarker中文文档,译自 Email: ddekany at users.sourceforge.net 1.变量.范围 本章介绍当模板在访问变量时发生了什么事情,还有变量是如 ...
- CodeForces Gym 100228 Graph of Inversions
题目大意 对于一个长为$N$的序列$A$,定义它所对应的逆序图: 有$N$个点组成,标号为$1...N$的无向图,对于每一组$i,j(i<j)$若存在$A_i>A_j$则在新图中就存在一条 ...
- LeetCode:Add Digits - 非负整数各位相加
1.题目名称 Add Digits (非负整数各位相加) 2.题目地址 https://leetcode.com/problems/add-digits/ 3.题目内容 英文:Given a non- ...
- GCC生成动态库
main.c #include <stdio.h> void hello(void); int main(int argc, char ** argv) { printf("Th ...
- 时间倒计时 JS
<div id="keleyi">Christmas Countdown</div> <script type="text/javascri ...
- RESTEasy入门学习
RESTEasy是JBoss的开源项目之一,是一个RESTful Web Services框架.RESTEasy的开发者Bill Burke同时也是JAX-RS的J2EE标准制定者之一.JAX-RS是 ...
- java.util.Date、java.sql.Date、java.sql.Time、java.sql.Timestamp区别和联系
java.util.Date.java.sql.Date.java.sql.Time.java.sql.Timestamp区别和联系 栏目:Java基础 作者:admin 日期:2015-04-19 ...
- maven spring3.2.5
出现的情形: 开发环境: spring3.2.5 + springmvc +spirngDATA +maven 一. 偶然的spring Junit4测试 加载applicationContext.x ...
- LDA与最小二乘法的关系及其变种详解
1 LDA与最小二乘法的关联 对于二值分类问题,令人惊奇的是最小二乘法和LDA分析是一致的.回顾之前的线性回归,给定N个d维特征的训练样例(i从1到N),每个对应一个类标签.我们之前令y=0表示一类, ...