题意:给定$a_0,a_1,b_0,b_1$

   问有多少x满足1:$gcd(x,a_0)=a_1$

          2:$lcm(x,b_0)=b_1$

思路:暴力枚举(当然不是死枚举)

   枚举$a_1$的倍数,判断。。

  然而,,,,50分+TLE

正解:

首先:对于已知:1:$gcd(x,a_0)=a_1$得

              $gcd(\frac{x}{a_1},\frac{a_0}{a_1})=1$

2:$lcm(x,b_0)=b_1$ 可得

          $gcd(x,b_0)=x*\frac{b_0}{lcm(x,b_0)}=x*\frac{b_0}{b_1}$

          所以:$gcd(\frac{x}{\frac{x*b_0}{b_1}},\frac{b_0}{\frac{x*b_0}{b_1}})=1$

          化简得:$gcd(\frac{b_1}{b_0},\frac{b_1}{x})=1$

  整理一下:  $\left\{\begin{aligned}gcd(\frac{x}{a_1},\frac{a_0}{a_1})=1\\gcd(\frac{b_1}{b_0},\frac{b_1}{x})=1\end{aligned}\right.$

所以: x 是 $a_1$ 的整数倍而且是$b_1$的因子

做法:$O(\sqrt{b_1})$枚举 $b_1$ 的因子(也就是 x),如果这个数是 $a_1$​ 的整数倍并且满足那两个式子,则 ans++

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
#define olinr return
#define love_nmr 0
#define _ 0
int n;
int a0,a1,b0,b1;
int ans;
inline int gcd(int x,int y)
{
return y? gcd(y,x%y):x;
}
signed main()
{
scanf("%d",&n);
while(n--)
{
ans=;
scanf("%d%d%d%d",&a0,&a1,&b0,&b1);
int A=a0/a1;
int B=b1/b0;
for(int i=;i*i<=b1;i++)
{
if(b1%i==)
{
if(i%a1==&&gcd(i/a1,A)==&&gcd(b1/i,B)==) ans++;
int ano=b1/i;
if(ano==i) continue;
if(ano%a1==&&gcd(ano/a1,A)==&&gcd(b1/ano,B)==) ans++;
}
}
printf("%d\n",ans);
}
olinr ~~(^_^)+love_nmr;
}

  

P1072 HanksonHankson 的趣味题的更多相关文章

  1. 洛谷 P1072 Hankson 的趣味题 解题报告

    P1072 \(Hankson\)的趣味题 题目大意:已知有\(n\)组\(a0,a1,b0,b1\),求满足\((x,a0)=a1\),\([x,b0]=b1\)的\(x\)的个数. 数据范围:\( ...

  2. luogu P1072 Hankson的趣味题

    题目链接 luogu P1072 Hankson 的趣味题 题解 啊,还是noip的题好做 额,直接推式子就好了 \(gcd(x,a_0)=a_1=gcd(\frac{x}{a_1},\frac{a_ ...

  3. 洛谷P1072 Hankson 的趣味题

    P1072 Hankson 的趣味题 题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一 ...

  4. Java实现洛谷 P1072 Hankson 的趣味题

    P1072 Hankson 的趣味题 输入输出样例 输入 2 41 1 96 288 95 1 37 1776 输出 6 2 PS: 通过辗转相除法的推导 import java.util.*; cl ...

  5. 洛谷P1072 Hankson 的趣味题(题解)

    https://www.luogu.org/problemnew/show/P1072(题目传送) 数学的推理在编程的体现越来越明显了.(本人嘀咕) 首先,我们知道这两个等式: (a0,x)=a1,[ ...

  6. 洛谷P1072 Hankson的趣味题

    这是个NOIP原题... 题意: 给定 a b c d 求 gcd(a, x) = b && lcm(c, x) = d 的x的个数. 可以发现一个朴素算法是从b到d枚举,期望得分50 ...

  7. 【题解】洛谷P1072 Hankson的趣味题 (gcd和lcm的应用)

    洛谷P1072:https://www.luogu.org/problemnew/show/P1072 思路 gcd(x,a0)=a1 lcm(x,b0)=b1→b0*x=b1*gcd(x,b0) ( ...

  8. 洛谷 P1072 Hankson 的趣味题

    题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现 在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲 ...

  9. 洛谷 - P1072 Hankson - 的趣味题 - 质因数分解

    https://www.luogu.org/problemnew/show/P1072 一开始看了一看居然还想放弃了的. 把 \(x,a_0,a_1,b_0,b_1\) 质因数分解. 例如 \(x=p ...

随机推荐

  1. Oracle学习笔记_01_SQL初步

    1.分类 SQL语句分为以下三种类型: DML: Data Manipulation Language        数据操纵语言       DDL: Data Definition Languag ...

  2. 关于 numpy.array和list之间的转换

    有两种方法: 1. 直接用list()函数 2. 用array.tolist()函数 如果np.array是一维,两者没有区别.但如果是二维结果是不同的. import numpy as np a1= ...

  3. cocos2d-x 中 xml 文件读取

    实现类 CXmlParse 啥也不说了  直接上硬货  believe yourself   一看就明白 CXmlParse.h #ifndef __C_XML_PARSE__ #define __C ...

  4. FEC之我见二

    前面简单说了一下FEC,以及它的配合使用的方法.下面我想详细说一下FEC算法: 曾经有位大神在帖子里这么写着:采用改进型的vandermonde矩阵RS算法.其优点算法运算复杂度更低且解决了利用矩阵构 ...

  5. luoguP1941福赖皮波德

    #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #inc ...

  6. linux 在后台运行数据库导入导出命令

    nohup imp dbusername/password@orcl file=/home/20170928.dmp ignore=y log=/home/oracle/20170928.log fu ...

  7. 利用dynamic来提供动态方法的性能

    前段时间做了一个worklist的项目,有部分是利用xml配置DICOM的tag,然后根据xml把DICOM的Dataset转为实体类,或者把实体类转为Dataset. 当中主要应用了反射来调用Dat ...

  8. JVM插码之三:javaagent介绍及javassist介绍

    本文介绍一下,当下比较基础但是使用场景却很多的一种技术,稍微偏底层点,就是字节码插庄技术了...,如果之前大家熟悉了asm,cglib以及javassit等技术,那么下面说的就很简单了...,因为下面 ...

  9. 杂项:grunt-tmod

    ylbtech-杂项:grunt-tmod 前端模板预编译工具 tmodjs 的grunt自动化插件. 1.返回顶部 1. grunt-tmod 前端模板预编译工具 tmodjs 的grunt自动化插 ...

  10. [MySQL]关于Com_状态

    MySQL 5.5官方文档: http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Com_xxx C ...