(洛谷)P2709 小B的询问
题目描述
小B有一个序列,包含N个1~K之间的整数。他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数。小B请你帮助他回答询问。
输入输出格式
输入格式:
第一行,三个整数N、M、K。
第二行,N个整数,表示小B的序列。
接下来的M行,每行两个整数L、R。
输出格式:
M行,每行一个整数,其中第i行的整数表示第i个询问的答案。
输入输出样例
说明
对于全部的数据,1<=N、M、K<=50000
题解;
k^2和(k+1)^2的关系。
#include <bits/stdc++.h>
using namespace std;
const int MAXN=50010;
int a[MAXN],num[MAXN],s,ans=0,anss[MAXN];
struct node{
int l,r;
int id;
}x[MAXN];
bool cmp1(node k,node z)
{
if(k.l/s==z.l/s) //此处时分块的地方,将在同一块的放在一起。
{
return k.r<z.r;
}
return k.l<z.l;
}
void add(int i)
{
int k=num[a[i]]++;//(k+1)^2-k^2=2*k+1;从k->k+1加上2*k+1;
ans+=k*2+1;
}
void del(int i)
{
int k=--num[a[i]];//此处便是减去前一个的2*k+1;
ans=ans-2*k-1;
}
int main()
{
int n,m,k;
scanf("%d%d%d",&n,&m,&k);
for (int i = 1; i <=n ; ++i) {
scanf("%d",&a[i]);
}
s=(int)sqrt(n);
for (int i = 1; i <=m ; ++i) {
scanf("%d%d",&x[i].l,&x[i].r);
x[i].id=i;
}
sort(x+1,x+1+m,cmp1);
int l=1,r=0;
ans=0;
for (int i = 1; i <=m ; ++i) {
while (r<x[i].r) add(++r); //r本身已经加过了,要从下一点开始。
while (r>x[i].r) del(r--);//减这个操作要把自己本身也给减掉。
while (l>x[i].l) add(--l);
while (l<x[i].l) del(l++);
anss[x[i].id]=ans;
}
for (int i = 1; i <=m ; ++i) {
printf("%d\n",anss[i]);
}
return 0;
}
(洛谷)P2709 小B的询问的更多相关文章
- [洛谷 P2709] 小B的询问
P2709 小B的询问 题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数 ...
- 洛谷——P2709 小B的询问
P2709 小B的询问 莫队算法,弄两个指针乱搞即可 这应该是基础莫队了吧 $x^2$可以拆成$((x-1)+1)^2$,也就是$(x-1)^2+1^2+2\times (x-1)$,那么如果一个数字 ...
- 洛谷P2709 小B的询问 莫队做法
题干 这个是用来学莫队的例题,洛谷详解 需要注意的一点,一定要分块!不然会慢很多(直接TLE) 其中分块只在排序的时候要用,并且是给问题右端点分块 再就是注意add与del函数里的操作,增加数量不提, ...
- 【刷题】洛谷 P2709 小B的询问
题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重 ...
- 洛谷P2709 小B的询问
题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重 ...
- 洛谷P2709 小B的询问 莫队
小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数.小 ...
- [题解]洛谷P2709 小B的询问
地址 是一道莫队模板题. 分析 设\(\text{vis[i]}\)表示元素\(\text{i}\)出现的次数 当一个元素进入莫队时,它对答案的贡献增加.有\(\delta Ans=(X+1)^2-X ...
- 洛谷 P2709 小B的询问(莫队)
题目链接:https://www.luogu.com.cn/problem/P2709 这道题是模板莫队,然后$i$在$[l,r]$区间内的个数就是$vis[ ]$数组 $add()$和$del()$ ...
- 莫队 [洛谷2709] 小B的询问[洛谷1903]【模板】分块/带修改莫队(数颜色)
莫队--------一个优雅的暴力 莫队是一个可以在O(n√n)内求出绝大部分无修改的离线的区间问题的答案(只要问题满足转移是O(1)的)即你已知区间[l,r]的解,能在O(1)的时间内求出[l-1, ...
- 洛谷2709 小B的询问(莫队)
题面 题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R] ...
随机推荐
- The fool doth think he is wise, but the wise man knows himself to be a fool.
The fool doth think he is wise, but the wise man knows himself to be a fool.愚者总自以为聪明,智者则有自知之明.
- 笨办法学Python(三十四)
习题 34: 访问列表的元素 列表的用处很大,但只有你能访问里边的内容时它才能发挥出作用来.你已经学会了按顺序读出列表的内容,但如果你要得到第 5 个元素该怎么办呢?你需要知道如何访问列表中的元素.访 ...
- session的MaxInactiveInterval=0在tomcat6和tomcat8不同表现
在tomcat6中调用 request.getSession().setMaxInactiveInterval(0); 这个session会立即过期. 而在tomcat8中,同样的调用,会导致这个se ...
- java研发常见问题总结2
1. String.StringBuffer与StringBuilder之间区别 关于这三个类在字符串处理中的位置不言而喻,那么他们到底有什么优缺点,到底什么时候该用谁呢?下面我们从以下几点说明一下 ...
- POJ - 1201 Intervals (最短路解线性规划)
相交区间选尽量少的点是可以贪心的,右端点排序以后,尽量往右边放可以得到可以使得点在区间尽可能多. 但是我只想到了O(n)的维护方法.(数据比较水,能过... 或者是前缀和可以写sum(bi) - su ...
- python图形库(1)
python有很好图形库cv2(包含很多图形处理的算法),pylab(绘图工具模块) 这两个“模块”是肯定要配置的. 安装这两个模块可用了我不少时间. pylab它不是一个包,而是 numpy, sc ...
- #WPF的3D开发技术基础梳理
原文:#WPF的3D开发技术基础梳理 自学WPF已经有半年有余了,一遍用,一边学.但是一直没有去触摸WPF的3D开发相关技术,因为总觉得在内心是一座大山,觉得自己没有能力去逾越.最近因为一个项目的相关 ...
- 【转】NodeJS教程--基于ExpressJS框架的文件上传
本文是翻译的一篇文章,原文地址:Handle File Uploads in Express (Node.js). 在NodeJS发展早期上传文件是一个较难操作的功能,随后出现了formidable. ...
- stixel-world代码解读
下边缘的求法应该是使用的第二篇论文的方法 上边缘的求法应该是使用的第一篇论文的方法 这是求上边缘的代码: std::vector<float> integralMembership(vma ...
- apache单ip配置多端口多站点
1.修改 /etc/httpd/conf/httpd.conf 添加一个Listen,如: Listen 80 Listen 8001 Listen 8002 2.添加一个VirtualHost #v ...