非局部均值(NL-means)是近年来提出的一项新型的去噪技术。该方法充分利用了图像中的冗余信息,在去噪的同时能最大程度地保持图像的细节特征。基本思想是:当前像素的估计值由图像中与它具有相似邻域结构的像素加权平均得到。

理论上,该算法需要在整个图像范围内判断像素间的相似度,也就是说,每处理一个像素点时,都要计算它与图像中所有像素点间的相似度。但是考虑到效率问题,实现的时候,会设定两个固定大小的窗口:搜索窗口和邻域窗口。邻域窗口在搜索窗口中滑动,根据邻域间的相似性确定像素的权值。

下图是NL-means算法执行过程,大窗口是以目标像素为中心的搜索窗口,两个灰色小窗口分别是以为中心的邻域窗口。其中以为中心的邻域窗口在搜索窗口中滑动,通过计算两个邻域窗口间的相似程度为赋以权值 。

NL-means执行过程

设含噪声图像为,去噪后的图像为中像素点处的灰度值通过如下方式得到:

其中权值表示像素点间的相似度,它的值由以为中心的矩形邻域间的距离决定:

其中

为归一化系数,为平滑参数,控制高斯函数的衰减程度。越大高斯函数变化越平缓,去噪水平越高,但同时也会导致图像越模糊。越小,边缘细节成分保持得越多,但会残留过多的噪声点。的具体取值应当以图像中的噪声水平为依据。

程序:

close all;
clear all;
clc
I=double(imread('lena.tif'));
I=I+*randn(size(I));
tic
O1=NLmeans(I,,,);
toc
imshow([I,O1],[]);
function DenoisedImg=NLmeans(I,ds,Ds,h)
%I:含噪声图像
%ds:邻域窗口半径
%Ds:搜索窗口半径
%h:高斯函数平滑参数
%DenoisedImg:去噪图像
I=double(I);
[m,n]=size(I);
DenoisedImg=zeros(m,n);
PaddedImg = padarray(I,[ds,ds],'symmetric','both');
kernel=ones(*ds+,*ds+);
kernel=kernel./((*ds+)*(*ds+));
h2=h*h;
for i=:m
for j=:n
i1=i+ds;
j1=j+ds;
W1=PaddedImg(i1-ds:i1+ds,j1-ds:j1+ds);%邻域窗口1
wmax=;
average=;
sweight=;
%%搜索窗口
rmin = max(i1-Ds,ds+);
rmax = min(i1+Ds,m+ds);
smin = max(j1-Ds,ds+);
smax = min(j1+Ds,n+ds);
for r=rmin:rmax
for s=smin:smax
if(r==i1&&s==j1)
continue;
end
W2=PaddedImg(r-ds:r+ds,s-ds:s+ds);%邻域窗口2
Dist2=sum(sum(kernel.*(W1-W2).*(W1-W2)));%邻域间距离
w=exp(-Dist2/h2);
if(w>wmax)
wmax=w;
end
sweight=sweight+w;
average=average+w*PaddedImg(r,s);
end
end
average=average+wmax*PaddedImg(i1,j1);%自身取最大权值
sweight=sweight+wmax;
DenoisedImg(i,j)=average/sweight;
end
end

结果:

可以看出,NL-means去噪效果的确很好。但是该算法的最大缺陷就是计算复杂度太高,程序非常耗时,导致该算法不够实用。上例中256*256的lena图耗时高达33.913968s!!

针对此问题,积分图像的应用(二):非局部均值去噪(NL-means)一文使用积分图像对该算法进行加速。

非局部均值去噪(NL-means)的更多相关文章

  1. 积分图像的应用(二):非局部均值去噪(NL-means)

    非局部均值去噪(NL-means)一文介绍了NL-means基本算法,同时指出了该算法效率低的问题,本文将使用积分图像技术对该算法进行加速. 假设图像共像个素点,搜索窗口大小,领域窗口大小, 计算两个 ...

  2. NLM非局部均值算法相关

    NLM原文: 基于图像分割的非局部均值去噪算法 基于图像分割的非局部均值去噪算法_百度文库 https://wenku.baidu.com/view/6a51abdfcd22bcd126fff705c ...

  3. 非局部均值(Nonlocal-Mean)

    转载自网站:http://www.cnblogs.com/luo-peng/p/4785922.html 非局部均值去噪(NL-means)   非局部均值(NL-means)是近年来提出的一项新型的 ...

  4. 非局部均值滤波算法的python实现

    如题,比opencv自带的实现效果好 #coding:utf8 import cv2 import numpy as np def psnr(A, B): return 10*np.log(255*2 ...

  5. CVPR2020:基于自适应采样的非局部神经网络鲁棒点云处理(PointASNL)

    CVPR2020:基于自适应采样的非局部神经网络鲁棒点云处理(PointASNL) PointASNL: Robust Point Clouds Processing Using Nonlocal N ...

  6. OpenCV2:等间隔采样和局部均值的图像缩小

    图像的缩小从物理意义上来说,就是将图像的每个像素的大小缩小相应的倍数.但是,改变像素的物理尺寸显然不是那么容易的,从数字图像处理的角度来看,图像的缩小实际就是通过减少像素个数来实现的.显而易见的,减少 ...

  7. 【转】浅析C语言的非局部跳转:setjmp和longjmp

    转自 http://www.cnblogs.com/lienhua34/archive/2012/04/22/2464859.html C语言中有一个goto语句,其可以结合标号实现函数内部的任意跳转 ...

  8. 二十、Linux 进程与信号---非局部跳转

    20.1 setjmp 和 longjmp 函数 20.1.1 函数介绍 #include <setjmp.h> int setjmp(jmp_buf env); 函数功能:设置非局部跳转 ...

  9. Unix系统编程()执行非局部跳转:setjmp和longjmp

    使用库函数setjmp和longjmp可执行非局部跳转(local goto). 术语"非局部(nonlocal)"是指跳转目标为当前执行函数之外的某个位置. C语言里面有个&qu ...

随机推荐

  1. Ubuntu 14.04开发环境

    安装ssh服务:sudo apt-get install openssh-server 安装vim:sudo apt-get install vim-gtk 安装gparted:sudo apt-ge ...

  2. [转]七个对我最好的职业建议(精简版)--Nicholas C. Zakas

    一.不要别人点什么,就做什么 我的第一份工作,只干了8个月,那家公司就倒闭了.我问经理,接下来我该怎么办,他说: "小伙子,千万不要当一个被人点菜的厨师,别人点什么,你就烧什么.不要接受那样 ...

  3. Poj 2304 Combination Lock(模拟顺、逆时钟开组合锁)

    一.题目大意 模拟一个开组合的密码锁过程.就像电影你开保险箱一样,左转几圈右转几圈的就搞定了.这个牌子的锁呢,也有它独特的转法.这个锁呢,有一个转盘,刻度为0~39.在正北方向上有一个刻度指针.它的密 ...

  4. glusterfs安装配置简单使用

    GlusterFS是一种分布式分布式文件系统,默认采用无中心完全对等架构,搭建维护使用十分简单,是很受欢迎的分布式文件系统. 官网https://www.gluster.org/,官网上表示Glust ...

  5. 批量创建10个系统帐号tianda01-tianda10并设置密码

    #.添加用户 useradd tianda01 #.非交互式给密码 echo "pass"|passwd --stdin tianda #.- 加0思路 ()..} () #随机密 ...

  6. javaScript之Array方法

    Array类型和其他语言一样,是数据的有序列表,但不同的是数组的每一项们可以保存任何类型的数据. 1.检测方法(确定某个对象是不是数组) (1)value instanceof Array (2)Ar ...

  7. Servlet编程实例 续2

    -----------------siwuxie095 Servlet 跳转之请求的重定向 继续完善登录实例,如下: login.jsp 不变,修改 LoginServlet,新建两个 JSP 文件 ...

  8. 面试题: !=!=未看12 略多 sql语句练习 非常 有用

    JAVA面试总结 2015年03月25日 16:53:40 阅读数:4306 刚才看到的,先转载过来,没准以后用到…… 面试总结 2013年8月6日: 问题2:Hibernate的核心接口有哪些?   ...

  9. PCLVisualizer可视化类(5)

    博客转载自:http://www.pclcn.org/study/shownews.php?lang=cn&id=171 自定义交互 多数情况下,默认的鼠标和键盘交互设置不能满足用户的需求,用 ...

  10. 利用css实现鼠标经过元素,下划线由中间向两边展开

    代码如下: <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF ...