点此进入比赛

得分: \(42+10+14=66\)

排名: \(Rank\ 3\)

\(Rating\):\(+53\)

\(T1\):【HHHOJ200】稗田的梦中之梦(点此看题面

暴力\(DFS\)+上界限制,水到\(42\)分\(23333\)。

只需在暴力\(DFS\)的过程中,加上一个限制每个点的经过次数不能超过\(k\)次,这样显然会错,但至少不会\(TLE\)。

没什么细节,直接上骗分代码吧:

#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 15
#define K 7
#define V 25000
#define INF 1e9
#define add(x) (!cnt[x]++&&++tot)
#define del(x) (!--cnt[x]&&--tot)
#define DFS(x,y,s,t) (a[x][y]&&add(a[x][y]),vis[x][y]=1,dfs(x,y,s,t),vis[x][y]=0,a[x][y]&&del(a[x][y]))
using namespace std;
const int dx[4]={1,-1,0,0},dy[4]={0,0,1,-1};
int n,m,k,tot,ans=INF,a[N+5][N+5],v[N+5][N+5],vis[N+5][N+5],cnt[V+5];
I void dfs(CI x,CI y,CI s,CI t)//DFS
{
if(s>k||t>=ans) return;if(!(tot^k)) return (void)(ans=t);//经过次数大于k就退出
for(RI i=0,nx,ny;i^4;++i)//枚举走的方向
{
if((nx=x+dx[i])<1||nx>n||(ny=y+dy[i])<1||ny>m||!~a[nx][ny]) continue;//如果超出边界或到达-1,跳过
vis[nx][ny]?(dfs(nx,ny,s+1,t),0):DFS(nx,ny,s+1,t+v[nx][ny]);//搜索
}
}
int main()
{
RI i,j;for(scanf("%d%d%d",&n,&m,&k),i=1;i<=n;++i) for(j=1;j<=m;++j) scanf("%d",&a[i][j]);//读入数据
for(i=1;i<=n;++i) for(j=1;j<=m;++j) scanf("%d",&v[i][j]);//读入数据
for(i=1;i<=n;++i) for(j=1;j<=m;++j) ~a[i][j]&&DFS(i,j,0,v[i][j]);//搜索
return ans==INF?puts("-1"):printf("%d",ans),0;//输出答案
}

\(T2\):【HHHOJ201】阿求的Q(点此看题面

完全不会。。。

就水了\(a_i=0\)的\(10\)分最小费用最大流。

代码略。

\(T3\):【HHHOJ202】狂言【不凋的竹之花】(点此看题面

神仙题,但\(k\le2\)的\(14\)分还是很好骗的。

考虑\(k=1\),删除环上的任意一条边或者不删边即可。

考虑\(k=2\),略有些复杂,难以说清楚,但还是比较简单的。

这好像又类似于一道著名的神仙\(DZY\)题。

反正不会做。

【HHHOJ】ZJOI2019模拟赛(十五)03.17 解题报告的更多相关文章

  1. [NOI.AC 2018NOIP模拟赛 第三场 ] 染色 解题报告 (DP)

    题目链接:http://noi.ac/contest/12/problem/37 题目: 小W收到了一张纸带,纸带上有 n个位置.现在他想把这个纸带染色,他一共有 m 种颜色,每个位置都可以染任意颜色 ...

  2. 「2018-11-05模拟赛」T5 传送机 解题报告

    5.传送机(sent.*) 问题描述: 黄黄同学要到清华大学上学去了.黄黄同学很喜欢清华大学的校园,每次去上课时总喜欢把校园里面的每条路都走一遍,当然,黄黄同学想每条路也只走一遍. 我们一般人很可能对 ...

  3. 「模拟赛 2018-11-02」T3 老大 解题报告

    老大 题目描述 因为 OB 今年拿下 4 块金牌,学校赞助扩建劳模办公室为劳模办公室群,为了体现 OI 的特色,办公室群被设计成了树形(n 个点 n − 1 条边的无向连通图),由于新建的办公室太大以 ...

  4. 「2018-12-02模拟赛」T3 约束排列 解题报告

    3.约束排列(place.pas/cpp/in/out) 问题描述: 给出 n 个互不相同的小写字母,表示出现的字符类型,以及 k 个约束关系: .....,表示 ai 必须出现在 bi 前面(ai, ...

  5. 「2018-12-02模拟赛」T1 最短路 解题报告

    1.最短路(short.pas/cpp/in/out) 问题描述: 小 C 终于被小 X 感动了,于是决定与他看电影,然而小 X 距离电影院非常远,现在假设 每条道路需要花费小 X 的时间为 1,由于 ...

  6. NOI.AC NOIP模拟赛 第五场 游记

    NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...

  7. 【模拟题(电子科大MaxKU)】解题报告【树形问题】【矩阵乘法】【快速幂】【数论】

    目录: 1:一道简单题[树形问题](Bzoj 1827 奶牛大集会) 2:一道更简单题[矩阵乘法][快速幂] 3:最简单题[技巧] 话说这些题目的名字也是够了.... 题目: 1.一道简单题 时间1s ...

  8. 【HHHOJ】ZJOI2019模拟赛(十二)03.03 解题报告

    点此进入比赛 得分: \(0+77+20=97\) 排名: \(Rank\ 5\) \(Rating\):\(+46\) \(T1\):[HHHOJ178]依神(点此看题面) 这套题目中的唯一一道传统 ...

  9. 【HHHOJ】ZJOI2019模拟赛(十四)03.12 解题报告

    点此进入比赛 得分: \(50+5+24=79\) 排名: \(Rank\ 2\) \(Rating\):\(+79\) \(T1\):[HHHOJ197]古明地(点此看题面) 基本上全部时间都用来想 ...

随机推荐

  1. Windows下 virtualenv 使用

    Windows下 virtualenv 使用 win python virtualenv 首先在电脑上安装两个不同版本的python mkvirtualenv --python C:\Python34 ...

  2. Smarty保留变量信息

    对php里边的超级全局数组变量信息的使用 例如:$_GET.$_POST.$_SESSION.$_COOKIE.$_REQUEST.$_SERVER.$_ENV.$GLOBALS.$_FILES.常量 ...

  3. my.常用的话

    1. 60普通副本+++ 60普通副本+++ 60普通副本+++ 50封妖+++50封妖+++50封妖+++ 60一本十妖+++ 60一本十妖+++ 60一本十妖+++ 60封妖+++60封妖+++6 ...

  4. python 安装 第三方包

    ########1 (python 虚拟环境(如pycharm 中的 project )是一个独立的环境,所以也要重新安装一次第三方包) 上官网搜索 包 https://pypi.org/projec ...

  5. CSS动态伪类选择器温故

    动态伪类选择器 伪类选择器:大家熟悉的:[:link][:visited][:hover][:active]CSS3的伪类选择器分为六种:(1)动态伪类选择器(2)目标伪类选择器(3)语言伪类选择器( ...

  6. Django-4 模板层

    你可能已经注意到我们在例子视图中返回文本的方式有点特别. 也就是说,HTML被直接硬编码在 Python代码之中. def current_datetime(request): now = datet ...

  7. Neutron命令测试5

    jolin@jolin:/$ route -nKernel IP routing tableDestination Gateway Genmask Flags Metric Ref Use Iface ...

  8. HDU 5419——Victor and Toys——————【线段树|差分前缀和】

    Victor and Toys Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/131072 K (Java/Others ...

  9. JavaFX--第3天窗口布局

    1.windows之间的交互 2.关闭程序 3.布局镶嵌 1.windows之间的交互 我们要实现“确定”.“取消”之类的功能:就像我们平时使用Word的时候要关闭会提示要不要保存的信息. 步骤如下: ...

  10. 随机练习:C#实现维吉尼亚加密与解密(解密前提为已知密匙)

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...