Description

定义二元运算 opt 满足

现在给定一个长为 n 的数列 a 和一个长为 m 的数列 b ,接下来有 q 次询问。每次询问给定一个数字 c 
你需要求出有多少对 (i, j) 使得 a_i  opt b_j=c 。
 
 
 

Input

第一行是一个整数 T (1≤T≤10) ,表示测试数据的组数。
对于每组测试数据:
第一行是三个整数 n,m,q (1≤n,m,q≤50000) 。
第二行是 n 个整数,表示 a_1,a_2,?,a_n (0≤a_1,a_2,?,a_n≤50000) 。
第三行是 m 个整数,表示 b_1,b_2,?,b_m (0≤b_1,b_2,?,b_m≤50000) 。
第四行是 q 个整数,第 i 个整数 c_i (0≤c_i≤100000) 表示第 i 次查询的数。
 
 

Output

对于每次查询,输出一行,包含一个整数,表示满足条件的 (i, j) 对的个数。

 
 

Sample Input

2
2 1 5
1 3
2
1 2 3 4 5
2 2 5
1 3
2 4
1 2 3 4 5

Sample Output

1
0
1
0
0
1
0
1
0
1

正解:分治$FFT$。

比较简单的一个题。

构造$a,b$的生成函数,$a[i]$表示$a$序列中$i$出现的次数。

考虑分治,我们每次把区间分成两半时,跑两次$FFT$。

对于第一种情况,我们直接把$a$的$[l,mid]$部分和$b$的$[mid+1,r]$卷积即可。

对于第二种情况,我们考虑把$b$序列的$[l,mid]$部分翻转,那么就是$a$的$[mid+1,r]$部分和翻转以后的$b$的$[l,mid]$部分卷积得到的多项式。

然后我们递归两个子区间就行了。

还有两个序列中元素相等的情况,直接特判就行了。

 #include <bits/stdc++.h>
#define il inline
#define RG register
#define ll long long
#define N (500010) using namespace std; struct data{ double x,y; }A[N],B[N]; const double pi=acos(-1.0);
int a[N],b[N],rev[N],n,m,q,Mx,len1,len2;
ll ans[N]; il int gi(){
RG int x=,q=; RG char ch=getchar();
while ((ch<'' || ch>'') && ch!='-') ch=getchar();
if (ch=='-') q=-,ch=getchar();
while (ch>='' && ch<='') x=x*+ch-,ch=getchar();
return q*x;
} il data operator + (const data &a,const data &b){
return (data){a.x+b.x,a.y+b.y};
} il data operator - (const data &a,const data &b){
return (data){a.x-b.x,a.y-b.y};
} il data operator * (const data &a,const data &b){
return (data){a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x};
} il void fft(data *a,RG int n,RG int f){
for (RG int i=;i<n;++i) if (i<rev[i]) swap(a[i],a[rev[i]]);
for (RG int i=;i<n;i<<=){
RG data wn=(data){cos(pi/i),sin(pi/i)},x,y;
for (RG int j=;j<n;j+=i<<){
RG data w=(data){,};
for (RG int k=;k<i;++k,w=w*wn){
x=a[j+k],y=w*a[j+k+i];
a[j+k]=x+y,a[j+k+i]=x-y;
}
}
}
if (f==) return; reverse(a+,a+n);
for (RG int i=;i<n;++i) a[i].x/=n; return;
} il void solve(RG int l,RG int r){
if (l==r) return; RG int mid=(l+r)>>,len,lg=;
for (len=;len<=r-l+;len<<=) ++lg;
for (RG int i=;i<len;++i) rev[i]=rev[i>>]>>|((i&)<<(lg-));
for (RG int i=;i<len;++i) A[i]=B[i]=(data){,};
for (RG int i=l;i<=mid;++i) A[i-l].x=a[i]; fft(A,len,);
for (RG int i=mid+;i<=r;++i) B[i-mid-].x=b[i]; fft(B,len,);
for (RG int i=;i<len;++i) A[i]=A[i]*B[i]; fft(A,len,-);
for (RG int i=;i<len;++i) ans[i+mid++l]+=(ll)(A[i].x+0.5);
for (RG int i=;i<len;++i) A[i]=B[i]=(data){,};
for (RG int i=mid+;i<=r;++i) A[i-mid-].x=a[i]; fft(A,len,);
for (RG int i=l;i<=mid;++i) B[mid-i].x=b[i]; fft(B,len,);
for (RG int i=;i<len;++i) A[i]=A[i]*B[i]; fft(A,len,-);
for (RG int i=;i<len;++i) ans[i+]+=(ll)(A[i].x+0.5);
solve(l,mid),solve(mid+,r); return;
} il void work(){
n=gi(),m=gi(),q=gi(),memset(ans,,sizeof(ans));
memset(a,,sizeof(a)),memset(b,,sizeof(b)),len1=len2=;
for (RG int i=,x;i<=n;++i) ++a[x=gi()],len1=max(len1,x);
for (RG int i=,x;i<=m;++i) ++b[x=gi()],len2=max(len2,x);
for (RG int i=;i<=len1 && i<=len2;++i) ans[]+=1LL*a[i]*b[i];
Mx=max(len1,len2),solve(,Mx);
for (RG int i=;i<=q;++i) printf("%lld\n",ans[gi()]); return;
} int main(){
#ifndef ONLINE_JUDGE
freopen("calc.in","r",stdin);
freopen("calc.out","w",stdout);
#endif
RG int T=gi();
while (T--) work();
return ;
}

bzoj4836 [Lydsy2017年4月月赛]二元运算的更多相关文章

  1. bzoj 4836: [Lydsy2017年4月月赛]二元运算 -- 分治+FFT

    4836: [Lydsy2017年4月月赛]二元运算 Time Limit: 8 Sec  Memory Limit: 128 MB Description 定义二元运算 opt 满足   现在给定一 ...

  2. 【bzoj4836】[Lydsy2017年4月月赛]二元运算 分治+FFT

    题目描述 定义二元运算 opt 满足   现在给定一个长为 n 的数列 a 和一个长为 m 的数列 b ,接下来有 q 次询问.每次询问给定一个数字 c  你需要求出有多少对 (i, j) 使得 a_ ...

  3. [补档][Lydsy2017年4月月赛]抵制克苏恩

    [Lydsy2017年4月月赛]抵制克苏恩 题目 小Q同学现在沉迷炉石传说不能自拔.他发现一张名为克苏恩的牌很不公平. 如果你不玩炉石传说,不必担心,小Q同学会告诉你所有相关的细节.炉石传说是这样的一 ...

  4. 【BZOJ 4832 】 4832: [Lydsy2017年4月月赛]抵制克苏恩 (期望DP)

    4832: [Lydsy2017年4月月赛]抵制克苏恩 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 275  Solved: 87 Descripti ...

  5. 【BZOJ4832】[Lydsy2017年4月月赛]抵制克苏恩 概率与期望

    [BZOJ4832][Lydsy2017年4月月赛]抵制克苏恩 Description 小Q同学现在沉迷炉石传说不能自拔.他发现一张名为克苏恩的牌很不公平.如果你不玩炉石传说,不必担心,小Q同学会告诉 ...

  6. 【BZOJ4883】[Lydsy2017年5月月赛]棋盘上的守卫 KM算法

    [BZOJ4883][Lydsy2017年5月月赛]棋盘上的守卫 Description 在一个n*m的棋盘上要放置若干个守卫.对于n行来说,每行必须恰好放置一个横向守卫:同理对于m列来说,每列 必须 ...

  7. BZOJ 4881: [Lydsy2017年5月月赛]线段游戏

    4881: [Lydsy2017年5月月赛]线段游戏 Time Limit: 3 Sec  Memory Limit: 256 MBSubmit: 164  Solved: 81[Submit][St ...

  8. [Bzoj4832][Lydsy2017年4月月赛]抵制克苏恩 (期望dp)

    4832: [Lydsy2017年4月月赛]抵制克苏恩 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 673  Solved: 261[Submit][ ...

  9. 抵制克苏恩[Lydsy2017年4月月赛]

    题目描述 小Q同学现在沉迷炉石传说不能自拔.他发现一张名为克苏恩的牌很不公平.如果你不玩炉石传说,不必担心,小Q同学会告诉你所有相关的细节.炉石传说是这样的一个游戏,每个玩家拥有一个 30 点血量的英 ...

随机推荐

  1. CAS 5.X 安装

    官方文档: https://apereo.github.io/cas/5.1.x/index.html 几个基本概念 CAS Server: SSO服务器端 CAS Client : SSO客户端,内 ...

  2. php数组·的方法-数组排序

    /* * * 数组排序函数*/ //asort() 数组元素值升序排序 //arsort() 降序 $arr7=array(1,23,65,34,3,2,3,34,453,54,456,65,5); ...

  3. CSS3 中 图标编码 icon——Font-Awesome

    在做网页开发中经常会用到图标,原来经常会到一些icon网站上找导入到项目中,现在Font-Awesome中的有很多的图标,并且还在不断更新 现在Font-Awesome最新版本是4.7,下载出来的Fo ...

  4. jmeter-集合点---学习笔记

    集合点: 简单来理解一下,虽然我们的“性能测试”理解为“多用户并发测试”,但真正的并发是不存在的,为了更真实的实现并发这感念,我们可以在需要压力的地方设置集合点,每到输入用户名和密码登录时,所有的虚拟 ...

  5. python 编程,应该养成哪些好的习惯

    python 编程,应该养成哪些好的习惯? https://www.zhihu.com/question/28966220 无缓冲输出 python -u  sys.stdout.flush() 性能 ...

  6. Perf -- Linux下的系统性能调优工具,第 2 部分 特殊用法以及内核调优示例

    https://www.ibm.com/developerworks/cn/linux/l-cn-perf2/ 本文内容简介 之前介绍了 perf 最常见的一些用法,关注于 Linux 系统上应用程序 ...

  7. HDU 4342——History repeat itself——————【数学规律】

    History repeat itself Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on HDU. O ...

  8. mint-ui popup自动关闭

    <template> <div class="hello"> <input type="text" v-model="n ...

  9. 用canvas绘制一个简易时钟

    在见识了html5中canvas的强大,笔者准备制作一个简易时钟. 下面就是成果啦,制作之前我们先分析一下,绘制一个时钟需要做哪些准备. 一 . 1.首先这个时钟分为表盘,指针(时针,分针,秒针)和数 ...

  10. 【ArcGIS】文件地理数据库,个人地理数据库与ArcSDE的局别

    地理数据库的类型   地理数据库是用于保存数据集集合的“容器”.有以下三种类型: 文件地理数据库 - 在文件系统中以文件夹形式存储.每个数据集都以文件形式保存,该文件大小最多可扩展至 1 TB.建议使 ...