[Sdoi2014]数表

Time Limit: 10 Sec  Memory Limit: 512 MB
Submit: 2383  Solved: 1229
[Submit][Status][Discuss]

Description

有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为
能同时整除i和j的所有自然数之和。给定a,计算数表中不大于a的数之和。

Input

输入包含多组数据。
    输入的第一行一个整数Q表示测试点内的数据组数,接下来Q行,每行三个整数n,m,a(|a| < =10^9)描述一组数据。

Output

对每组数据,输出一行一个整数,表示答案模2^31的值。

Sample Input

2
4 4 3
10 10 5

Sample Output

20
148

HINT

1 < =N.m < =10^5  , 1 < =Q < =2×10^4

Source

 http://wenku.baidu.com/view/fbec9c63ba1aa8114431d9ac.html
 
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<set>
#include<ctime>
#include<vector>
#include<queue>
#include<algorithm>
#include<map>
#include<cmath>
#define inf 1000000000
#define pa pair<int,int>
#define ll long long
using namespace std;
int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int Q,mx,cnt;
struct data{
int n,m,a,id;
}q[];
bool mark[];
int pri[],mu[],t[];
int ans[];
pair<int,int> F[];
bool operator<(data a,data b)
{
return a.a<b.a;
}
void add(int x,int val)
{
for(int i=x;i<=mx;i+=i&-i)t[i]+=val;
}
int query(int x)
{
int tmp=;
for(int i=x;i;i-=i&-i)tmp+=t[i];
return tmp;
}
void pre()
{
mu[]=;
for(int i=;i<=mx;i++)
{
if(!mark[i])pri[++cnt]=i,mu[i]=-;
for(int j=;j<=cnt&&pri[j]*i<=mx;j++)
{
mark[pri[j]*i]=;
if(i%pri[j]==){mu[pri[j]*i]=;break;}
else mu[pri[j]*i]=-mu[i];
}
}
for(int i=;i<=mx;i++)
for(int j=i;j<=mx;j+=i)
F[j].first+=i;
for(int i=;i<=mx;i++)F[i].second=i;
}
void solve(int x)
{
int id=q[x].id,n=q[x].n,m=q[x].m;
for(int i=,j;i<=q[x].n;i=j+)
{
j=min(n/(n/i),m/(m/i));
ans[id]+=(n/i)*(m/i)*(query(j)-query(i-));
}
}
int main()
{
Q=read();
for(int i=;i<=Q;i++)
{
q[i].n=read();q[i].m=read();q[i].a=read();q[i].id=i;
if(q[i].n>q[i].m)swap(q[i].n,q[i].m);
mx=max(mx,q[i].n);
}
pre();
sort(q+,q+Q+);
sort(F+,F+mx+);
int now=;
for(int i=;i<=Q;i++)
{
while(now+<=mx&&F[now+].first<=q[i].a)
{
now++;
for(int j=F[now].second;j<=mx;j+=F[now].second)
add(j,F[now].first*mu[j/F[now].second]);
}
solve(i);
}
for(int i=;i<=Q;i++)
printf("%d\n",ans[i]&0x7fffffff);
}

BZOJ[Sdoi2014]数表 莫比乌斯反演的更多相关文章

  1. bzoj [SDOI2014]数表 莫比乌斯反演 BIT

    bzoj [SDOI2014]数表 莫比乌斯反演 BIT 链接 bzoj luogu loj 思路 \[ \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}a*[f[ ...

  2. BZOJ 3259 [Sdoi2014]数表 (莫比乌斯反演 + 树状数组)

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2321  Solved: 1187[Submit][Status ...

  3. BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1399  Solved: 694[Submit][Status] ...

  4. BZOJ 3529 [Sdoi2014]数表 (莫比乌斯反演+树状数组+离线)

    题目大意:有一张$n*m$的数表,第$i$行第$j$列的数是同时能整除$i,j$的所有数之和,求数表内所有不大于A的数之和 先是看错题了...接着看对题了发现不会做了...刚了大半个下午无果 看了Po ...

  5. 【BZOJ3529】[Sdoi2014]数表 莫比乌斯反演+树状数组

    [BZOJ3529][Sdoi2014]数表 Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和 ...

  6. 【bzoj3529】[Sdoi2014]数表 莫比乌斯反演+离线+树状数组

    题目描述 有一张n×m的数表,其第i行第j列(1 <= i <= n ,1 <= j <= m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. ...

  7. bzoj3529: [Sdoi2014]数表 莫比乌斯反演

    题意:求\(\sum_{i=1}^n\sum_{j=1}^nf(gcd(i,j))(gcd(i,j)<=a),f(x)是x的因子和函数\) 先考虑没有限制的情况,考虑枚举gcd为x,那么有\(\ ...

  8. BZOJ 3529 [Sdoi2014]数表 ——莫比乌斯反演 树状数组

    $ans=\sum_{i=1}^n\sum_{j=1}^n\sigma(gcd(i,j))$ 枚举gcd为d的所有数得到 $ans=\sum_{d<=n}\sigma(d)*g(d)$ $g(d ...

  9. bzoj 3529 数表 莫比乌斯反演+树状数组

    题目大意: 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. ...

随机推荐

  1. JAVA / MySql 编程—— 第三章 高级查询(一)

    1.        修改表: (1)修改表名语法: ALTER TABLE <旧表名> RENAME [ TO ] <新表名>: 注意:其中[TO]为可选参数,使用与否不影响结 ...

  2. ubuntu18.04.1LTS系统远程工具secureCRT

    ubuntu18.04.1LTS类windows的系统下安装远程管理工具 本地电脑之前安装的是win10,疲于win10频繁的更新和各种兼容问题,果断放弃win10系统,安装了Ubuntu 18.04 ...

  3. Oracle创建表空间,添加用户及授权

    工具/原料 PLSQL 方法/步骤 1.在PLSQL里,用system/css(orcl系统用户)登陆,登陆的时候普通用户登陆选择normal就可以了   2.Oracle用户新增 执行语句 crea ...

  4. 2016 ACM-ICPC Asia China-Final D 二分

    题意:一共有N个冰淇淋球,做一个冰淇淋需要K个球,并且由于稳定性,这K个球还必须满足上下相邻的下面比上面大至少两倍.先给出N个球的质量,问最多能做出多少个冰淇淋? 思路:二分答案并对其检验. 检验标准 ...

  5. Android面试收集录10 LruCache原理解析

    一.Android中的缓存策略 一般来说,缓存策略主要包含缓存的添加.获取和删除这三类操作.如何添加和获取缓存这个比较好理解,那么为什么还要删除缓存呢?这是因为不管是内存缓存还是硬盘缓存,它们的缓存大 ...

  6. [bzoj2932][POI1999]树的染色问题

    被百度搜到的题解(论文?)坑了. 写的那玩意好像石乐志... Description 一棵二叉树采用以下规则描述: 1.如果一个节点度数为0,则仅用一个元素“0”来描述它. 2.如果一个节点度数为1, ...

  7. 如何对比两个Jar包

    如果对比两个jar包呢?jar 都是class 文件,我对比jar,就是想知道,它增加了删除了哪些方法.增加了哪些类,删除了哪些类. 有很多方法,你可以,反编译,然后通过beyongCompair 去 ...

  8. 调用startActivityForResult后直接调用onActivityResult

    人员都知道,可以经由过程应用 startActivityForResult() 和 onActivityResult() 办法来传递或接管参数. 然而在"轻听"项目中,还没比及被调 ...

  9. javaWEB简单商城项目

    javaWEB简单商城项目(一) 项目中使用到了上一篇博文的分页框架,还有mybatis,重点是学习mybatis.现在有些小迷茫,不知道该干啥,唉,不想那么多了,学就对了 一.项目功能结构 1.功能 ...

  10. Python全栈工程师(包、模块 的导入)

    ParisGabriel                每天坚持手写  一天一篇  决定坚持几年 为了梦想 为了信仰     Python人工智能从入门到精通 $ pip3 install tenso ...