BZOJ[Sdoi2014]数表 莫比乌斯反演
[Sdoi2014]数表
Time Limit: 10 Sec Memory Limit: 512 MB
Submit: 2383 Solved: 1229
[Submit][Status][Discuss]
Description
有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为
能同时整除i和j的所有自然数之和。给定a,计算数表中不大于a的数之和。
Input
输入包含多组数据。
输入的第一行一个整数Q表示测试点内的数据组数,接下来Q行,每行三个整数n,m,a(|a| < =10^9)描述一组数据。
Output
对每组数据,输出一行一个整数,表示答案模2^31的值。
Sample Input
4 4 3
10 10 5
Sample Output
148
HINT
1 < =N.m < =10^5 , 1 < =Q < =2×10^4
Source
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<set>
#include<ctime>
#include<vector>
#include<queue>
#include<algorithm>
#include<map>
#include<cmath>
#define inf 1000000000
#define pa pair<int,int>
#define ll long long
using namespace std;
int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int Q,mx,cnt;
struct data{
int n,m,a,id;
}q[];
bool mark[];
int pri[],mu[],t[];
int ans[];
pair<int,int> F[];
bool operator<(data a,data b)
{
return a.a<b.a;
}
void add(int x,int val)
{
for(int i=x;i<=mx;i+=i&-i)t[i]+=val;
}
int query(int x)
{
int tmp=;
for(int i=x;i;i-=i&-i)tmp+=t[i];
return tmp;
}
void pre()
{
mu[]=;
for(int i=;i<=mx;i++)
{
if(!mark[i])pri[++cnt]=i,mu[i]=-;
for(int j=;j<=cnt&&pri[j]*i<=mx;j++)
{
mark[pri[j]*i]=;
if(i%pri[j]==){mu[pri[j]*i]=;break;}
else mu[pri[j]*i]=-mu[i];
}
}
for(int i=;i<=mx;i++)
for(int j=i;j<=mx;j+=i)
F[j].first+=i;
for(int i=;i<=mx;i++)F[i].second=i;
}
void solve(int x)
{
int id=q[x].id,n=q[x].n,m=q[x].m;
for(int i=,j;i<=q[x].n;i=j+)
{
j=min(n/(n/i),m/(m/i));
ans[id]+=(n/i)*(m/i)*(query(j)-query(i-));
}
}
int main()
{
Q=read();
for(int i=;i<=Q;i++)
{
q[i].n=read();q[i].m=read();q[i].a=read();q[i].id=i;
if(q[i].n>q[i].m)swap(q[i].n,q[i].m);
mx=max(mx,q[i].n);
}
pre();
sort(q+,q+Q+);
sort(F+,F+mx+);
int now=;
for(int i=;i<=Q;i++)
{
while(now+<=mx&&F[now+].first<=q[i].a)
{
now++;
for(int j=F[now].second;j<=mx;j+=F[now].second)
add(j,F[now].first*mu[j/F[now].second]);
}
solve(i);
}
for(int i=;i<=Q;i++)
printf("%d\n",ans[i]&0x7fffffff);
}
BZOJ[Sdoi2014]数表 莫比乌斯反演的更多相关文章
- bzoj [SDOI2014]数表 莫比乌斯反演 BIT
bzoj [SDOI2014]数表 莫比乌斯反演 BIT 链接 bzoj luogu loj 思路 \[ \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}a*[f[ ...
- BZOJ 3259 [Sdoi2014]数表 (莫比乌斯反演 + 树状数组)
3529: [Sdoi2014]数表 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 2321 Solved: 1187[Submit][Status ...
- BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]
3529: [Sdoi2014]数表 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1399 Solved: 694[Submit][Status] ...
- BZOJ 3529 [Sdoi2014]数表 (莫比乌斯反演+树状数组+离线)
题目大意:有一张$n*m$的数表,第$i$行第$j$列的数是同时能整除$i,j$的所有数之和,求数表内所有不大于A的数之和 先是看错题了...接着看对题了发现不会做了...刚了大半个下午无果 看了Po ...
- 【BZOJ3529】[Sdoi2014]数表 莫比乌斯反演+树状数组
[BZOJ3529][Sdoi2014]数表 Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和 ...
- 【bzoj3529】[Sdoi2014]数表 莫比乌斯反演+离线+树状数组
题目描述 有一张n×m的数表,其第i行第j列(1 <= i <= n ,1 <= j <= m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. ...
- bzoj3529: [Sdoi2014]数表 莫比乌斯反演
题意:求\(\sum_{i=1}^n\sum_{j=1}^nf(gcd(i,j))(gcd(i,j)<=a),f(x)是x的因子和函数\) 先考虑没有限制的情况,考虑枚举gcd为x,那么有\(\ ...
- BZOJ 3529 [Sdoi2014]数表 ——莫比乌斯反演 树状数组
$ans=\sum_{i=1}^n\sum_{j=1}^n\sigma(gcd(i,j))$ 枚举gcd为d的所有数得到 $ans=\sum_{d<=n}\sigma(d)*g(d)$ $g(d ...
- bzoj 3529 数表 莫比乌斯反演+树状数组
题目大意: 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. ...
随机推荐
- (转)基于REST架构的Web Service设计
原文出处:http://www.williamlong.info/archives/1728.html ------------------------------------------------ ...
- 图解HTTP总结(2)——简单的HTTP协议
HTTP协议是一种不保存状态,即无状态(stateless)协议.HTTP协议自身不对请求和响应之间的通信状态进行保存.也就是说在HTTP这个级别,协议对于发送过的请求或响应都不做持久化处理. 使用H ...
- Codeforces Round #392 (Div. 2) Unfair Poll
C. Unfair Poll time limit per test 1 second memory limit per test 256 megabytes input standard input ...
- [CodeForces954D]Fight Against Traffic(最短路)
Description 题目链接 Solution 从起点和终点分别做一次最短路并记录结果 枚举每一条可能的边判断 Code #include <cstdio> #include < ...
- L2-029 特立独行的幸福 (25 分)
L2-029 特立独行的幸福 (25 分) 对一个十进制数的各位数字做一次平方和,称作一次迭代.如果一个十进制数能通过若干次迭代得到 1,就称该数为幸福数.1 是一个幸福数.此外,例如 19 经过 ...
- 18式优雅你的Python
本文来自读者梁云同学的投稿,公众号:Python与算法之美 一,优雅你的Jupyter 1,更改Jupyter Notebook初始工作路径 平凡方法: 在cmd中输入jupyter notebook ...
- JS中调用android和ios系统手机打开相机并可选择相册功能
编写不易,如有转载,请声明出处: 梦回河口:http://blog.csdn.net/zxc514257857/article/details/57626154 实现android手机打开相机选择相册 ...
- 14 Django的用户认证组件
用户认证 auth模块 from django.contrib import auth django.contrib.auth中提供了许多方法,这里主要介绍其中的三个: 1.1 .authentica ...
- CSS3裁剪与遮罩解析
一.用途 CSS3裁剪与遮罩(Clipping and Masking)用来隐藏元素的一部分而显示另一部分 二.区别 CSS3裁剪与遮罩(Clipping and Masking)用来隐藏元素的一部分 ...
- JavaSE总结--异常
throwable Error: Exception: 编译型异常: 运行时异常: