EM最大期望算法
【简介】
em算法,指的是最大期望算法(Expectation Maximization Algorithm,又译期望最大化算法),是一种迭代算法,在统计学中被用于寻找,依赖于不可观察的隐性变量的概率模型中,参数的最大似然估计。
EM 算法是 Dempster,Laind,Rubin 于 1977 年提出的求参数极大似然估计的一种方法,它可以从非完整数据集中对参数进行 MLE 估计,是一种非常简单实用的学习算法。这种方法可以广泛地应用于处理缺损数据,截尾数据,带有噪声等所谓的不完全数据。可以有一些比较形象的比喻说法把这个算法讲清楚。比如说食堂的大师傅炒了一份菜,要等分成两份给两个人吃,显然没有必要拿来天平一点的精确的去称分量,最简单的办法是先随意的把菜分到两个碗中,然后观察是否一样多,把比较多的那一份取出一点放到另一个碗中,这个过程一直迭代地执行下去,直到大家看不出两个碗所容纳的菜有什么分量上的不同为止。
EM算法就是这样,假设我们估计知道A和B两个参数,在开始状态下二者都是未知的,并且知道了A的信息就可以得到B的信息,反过来知道了B也就得到了A。可以考虑首先赋予A某种初值,以此得到B的估计值,然后从B的当前值出发,重新估计A的取值,这个过程一直持续到收敛为止(百度百科)。
【算法】
1、计算期望(E),利用概率模型参数的现有估计值,计算隐藏变量的期望;
2、最大化(M),利用E 步上求得的隐藏变量的期望,对参数模型进行最大似然估计;
3、M 步上找到的参数估计值被用于下一个 E 步计算中,这个过程不断交替进行。
【代码】
import math;
import copy;
import numpy as np;
import matplotlib.pyplot as plt; isdebug = True # 指定k个高斯分布參数。这里指定k=2。注意2个高斯分布具有同样均方差Sigma,分别为M1,M2。
def getdataSet(Sigma,M1,M2,k,N):
#创建长度为N的数据
dataSet = np.zeros((1,N))
for i in range(N):
#为数据赋值,并随机分开两组数据
if np.random.random(1) > 0.333:
dataSet[0,i] = np.random.normal()*Sigma + M1
else:
dataSet[0,i] = np.random.normal()*Sigma + M2
if isdebug:
print ("dataSet:",dataSet)
return dataSet # E算法:计算期望E[zij]
def E(Sigma,dataSet,Miu,k,N):
#创建概率数组
Exp = np.zeros((N,k))
Num = np.zeros(k)
for i in range(N):
Sum = 0
for j in range(k):
#求数据的高斯分布概率
Num[j] = math.exp((-1/(2*(float(Sigma**2))))*(float(dataSet[0,i]-Miu[j]))**2)
Sum += Num[j]
for j in range(k):
#求没类数据在各类中的占比,即隐藏变量Z
Exp[i,j] = Num[j] / Sum
if isdebug:
print ("Exp:",Exp) return Exp # M算法:最大化E[zij]的參数Miu
def M(Exp,dataSet,k,N):
Miu = np.random.random(k)
for j in range(k):
Num = 0
Sum = 0
for i in range(N):
Num += Exp[i,j]*dataSet[0,i]
Sum += Exp[i,j]
Miu[j] = Num / Sum
if isdebug:
print("Miu:",Miu)
return Miu #初始参数
Sigma = 6
M1 = -20
M2 = 20
k=2
N=0xffff #65535
Iter=0xff
EPS =1e-6 #随机初始数据
dataSet=getdataSet(Sigma,M1,M2,k,N) #初始先假设一个E[zij]
Miu = np.random.random(2)
# 算法迭代
for i in range(Iter):
oldMiu = copy.deepcopy(Miu)
#E
Exp = E(Sigma,dataSet,Miu,k,N)
#M
Miu = M(Exp,dataSet,k,N)
#如果达到精度Epsilon停止迭代
if sum(abs(Miu-oldMiu)) < EPS:
if isdebug:
print ("Iter:",i)
break plt.figure('emmmmm',figsize=(12, 6))
plt.hist(dataSet[0,:],100)
plt.xticks(fontsize=10, color="darkorange")
plt.yticks(fontsize=10, color="darkorange")
plt.show()
【结果】

【参考文献】
https://blog.csdn.net/sm9sun/article/details/78745265
https://www.cnblogs.com/cxchanpin/p/6731780.html
------------------------------------------华丽的分割线------------------------------------------------------
有兴趣的同学可以关注公总号:RaoRao1994

EM最大期望算法的更多相关文章
- EM最大期望算法-走读
打算抽时间走读一些算法,尽量通俗的记录下面,希望帮助需要的同学. overview: 基本思想: 通过初始化参数P1,P2,推断出隐变量Z的概率分布(E步): 通过隐变量Z的概 ...
- 【机器学习】EM最大期望算法
EM, ExpectationMaximization Algorithm, 期望最大化算法.一种迭代算法,用于含有隐变量(hidden variable)的概率参数模型的最大似然估计或极大后验概率估 ...
- MLE极大似然估计和EM最大期望算法
机器学习十大算法之一:EM算法.能评得上十大之一,让人听起来觉得挺NB的.什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题.神为什么是神,因为神能做很多人做不了的事.那么EM ...
- EM最大期望化算法
最大期望算法(Expectation-maximization algorithm,又译期望最大化算法)在统计中被用于寻找,依赖于不可观察的隐性变量的概率模型中,参数的最大似然估计. 在统计计算中,最 ...
- EM(期望最大化)算法初步认识
不多说,直接上干货! 机器学习十大算法之一:EM算法(即期望最大化算法).能评得上十大之一,让人听起来觉得挺NB的.什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题.神为什么 ...
- 最大期望算法 Expectation Maximization概念
在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Lat ...
- EM 算法
这个暂时还不太明白,先写一点明白的. EM:最大期望算法,属于基于模型的聚类算法.是对似然函数的进一步应用. 我们知道,当我们想要估计某个分布的未知值,可以使用样本结果来进行似然估计,进而求最大似然估 ...
- 顶尖数据挖掘辅助教学套件(TipDM-T6)产品白皮书
顶尖数据挖掘辅助教学套件 (TipDM-T6) 产 品 说 明 书 广州泰迪智能科技有限公司 版权所有 地址: 广州市经济技术开发区科学城232号 网址: ht ...
- 顶尖大数据挖掘实战平台(TipDM-H8)产品白皮书
顶尖大数据挖掘实战平台 (TipDM-H8) 产 品 说 明 书 广州泰迪智能科技有限公司 版权所有 地址: 广州市经济技术开发区科学城232号 网址: http: ...
随机推荐
- 关于多账套API的设计
帐套在财务核算中是记载一个独立核算的经济实体的所有往来信息的一整套记录表和统计分析报表.不同的帐套之间的关系是相对独立的,对其中的任何一个帐套中的数据进行建立.删除或修改都不会影响其他帐套.在ERP中 ...
- pipeline(管道的连续应用)
# -*- coding: utf-8 -*- """ Created on Tue Aug 09 22:55:06 2016 @author: Administrato ...
- LAMP 3.2 mysql登陆
mysql 服务启动时,不仅会监听 IP:Port,还会监听一个 socket,我们安装的 mysql 是监听在/tmp/mysql.sock.如果 php 是在本地,那么 php 和 mysql 通 ...
- lucene、solr中的日期衰减方法-------function query --尚未测试在solr4.8
经常有一种情景是这样的:我们索引了N年的文章,而查询时候无论直接用相关度.或者用时间排序,都是比较鲁莽的:我们想要一种既要相关度比较高,又要时间上比较新的文章. 这时候的解决办法就是,自定义日期衰减的 ...
- 第4章 springboot热部署 4-1 SpringBoot 使用devtools进行热部署
/imooc-springboot-starter/src/main/resources/application.properties #关闭缓存, 即时刷新 #spring.freemarker.c ...
- 【摘自lvs官网】lvs介绍
Linux Virtual Server项目的目标 :使用集群技术和Linux操作系统实现一个高性能.高可用的服务器,它具有很好的可伸缩性(Scalability).可靠性(Reliability)和 ...
- windows VS2013 编译安装QWT6.1和QWTPolar1.1.1
QWT的编译和配置 1. 下载QWT从官网 For getting a snapshot with all bugfixes for the latest 5.2 release: svn expor ...
- Luogu U15118 萨塔尼亚的期末考试(fail)
感觉...昨天是真的傻... 题意 T个询问,每个询问给一个n,求 $ \frac{\sum_{n}^{i = 1}Fib_{i} * i}{n * (n + 1) / 2} $ Fib是斐波那契数列 ...
- 10.model/view实例(4)
任务:给表单的每一列添加列名. 思考: 1.只需要添加一个函数 headerData(). 横向方面添加列名 代码如下: QVariant MyModel::headerData(int sectio ...
- Python程序设计2——列表和元组
数据结构:更好的说法是从数据角度来说,结构化数据,就是说数据并不是随便摆放的,而是有一定结构的,这种特别的结构会带来某些算法上的性能优势,比如排序.查找等. 在Python中,最基本的数据结构是序列( ...