题面

传送门

思路

p到a

首先,本题中如果对于所有的$i$,连边$<i,p_i>$,那么可以得到一批环

那么这个题另外一点就是,可以变成连边$<i,p_{p_i}>$

我们分多种情况来讨论

情况1:啥也没变

就是啥也没变

情况2:全都变了

这时考虑奇环和偶环

对于一个奇环,全部变了以后,它还是一个环,但是不是同构的

对于一个偶环,全换了以后,它会变成两个环,分别是全部奇数节点和全部偶数节点

情况3:变了一部分

此时容易发现,变出去的部分应该会这样:

$<i,p_i>$变成$<i,p_{p_i}>$,则$p_i$变成环上外挂的一个节点

这样一直讨论下去可以得到,最终我们会得到一棵环套树,并且每一棵树都只有可能是一条链

对于每一条链我们这样考虑:

如果链形如这样:

那么肯定ans=0,因为这个长度为2的链没有2条环边配合它

如果是这样:

如果恰好相等,那么这条链只有一种情况

如果不相等,那么这条链会有两种情况:放在这一段环的最开始和最末尾

此时它对答案贡献一个乘2

a到p

讨论完以后,我们回到问题本身,发现我们拿到了的是$a$不是$p$

所以我们要求的实际上就是这个$<i,a_i>$图反推回去的方案数

那么,我们把环和环套树分开处理

显然环套树就是按照上面的讨论,乘1乘2或者乘0

对于所有长度相同的环,我们需要考虑它们两两合并的情况

此时可以用数学方法很快求出

具体一点来说,如果有$n$个长度为$L$的环,那么它们的贡献就是

$\sum_{t=0}^{\lfloor \frac{n}{2}\rfloor} L^n f(t2) C(n,2t) $

如果$n$是大于1的奇数还要再乘以2(因为此时可以像上面说的那样自我同构一下)

其中$f(2t)$表示的是$2t$个数互相配对的方案数

最后把所有长度的环的贡献乘起来,再乘上每个环套树的贡献,就是答案了

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#define ll long long
#define MOD 1000000007
using namespace std;
inline int read(){
int re=0,flag=1;char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') flag=-1;
ch=getchar();
}
while(isdigit(ch)) re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
return re*flag;
}
ll f[200010],finv[200010],meth[200010];
ll qpow(ll a,ll b){
ll re=1;
while(b){
if(b&1) re=(re*a)%MOD;
a=a*a%MOD;b>>=1;
}
return re;
}
void init(){
ll i,len=200000;
f[0]=f[1]=finv[0]=finv[1]=1;
for(i=2;i<=len;i++) f[i]=f[i-1]*i%MOD;
finv[len]=qpow(f[len],MOD-2);
for(i=len;i>2;i--) finv[i-1]=finv[i]*i%MOD;
}
int n,a[200010],vis[200010],cir[200010],cntcir=0,in[200010],bst[200010],siz[200010];
ll ans=1;
vector<int>s;
vector<int>nd[200010];
bool cmp(int l,int r){
return siz[l]<siz[r];
}
ll C(ll x,ll y){
return f[x]*finv[y]%MOD*finv[x-y]%MOD;
}
int main(){
n=read();int i,j;ll tmp,c,cc;
init();
meth[0]=1;
for(i=1;i<=n;i++) meth[i]=C(i*2,i)*f[i]%MOD*qpow(qpow(2,MOD-2),i)%MOD; for(i=1;i<=n;i++) a[i]=read(),in[a[i]]++;
for(i=1;i<=n;i++){//取出环
j=i;
while(!vis[j]) vis[j]=i,j=a[j];
if(vis[j]^i) continue;
cntcir++;
while(!cir[j]){
cir[j]=cntcir,nd[cntcir].push_back(j),siz[cntcir]++,j=a[j];
}
}
memset(vis,0,sizeof(vis));
for(i=1;i<=n;i++){//判断环套树,以及外挂树是不是都是链
if(in[i]) continue;
j=i;
while(!cir[j]&&!vis[j]) j=a[j];
if(vis[j]){
puts("0");return 0;
}
bst[cir[j]]=1;tmp=cir[j];
j=i;c=0;
while(!cir[j]) cir[j]=tmp,c++,vis[j]=1,j=a[j];
vis[j]=c;
}
for(i=1;i<=cntcir;i++){//环套树处理
if(!bst[i]){s.push_back(i);continue;}
for(j=0;j<nd[i].size();j++) if(vis[nd[i][j]]) break;
tmp=j;
do{
c=j;cc=1;
j--;
(j+=(int)nd[i].size());
j%=(int)nd[i].size();
for(;!vis[nd[i][j]];j--,j=((j<0)?j+nd[i].size():j)) cc++;
if(vis[nd[i][c]]>cc){
puts("0");return 0;
}
if(vis[nd[i][c]]<cc) (ans*=2)%=MOD;
}while(tmp!=j);
}
sort(s.begin(),s.end(),cmp);
for(i=0;i<s.size();i+=c){
j=i;tmp=0;
while(siz[s[j]]==siz[s[i]]&&j<s.size()) j++;
c=j-i;
for(j=0;j<=c/2;j++){
(tmp+=C(c,2*j)*meth[j]%MOD*qpow(siz[s[i]],j)%MOD*qpow(2,(c-2*j)*(siz[s[i]]!=1)*(siz[s[i]]&1))%MOD)%=MOD;
}
ans=ans*tmp%MOD;
}
printf("%lld\n",ans);
}

[AGC008E] Next or Nextnext [环套树森林+结论讨论]的更多相关文章

  1. BZOJ4883: [Lydsy1705月赛]棋盘上的守卫(最小环套树森林&优化定向问题)

    4883: [Lydsy1705月赛]棋盘上的守卫 Time Limit: 3 Sec  Memory Limit: 256 MBSubmit: 475  Solved: 259[Submit][St ...

  2. BZOJ 4883 [Lydsy2017年5月月赛]棋盘上的守卫(最小生成环套树森林)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4883 [题目大意] 在一个n*m的棋盘上要放置若干个守卫. 对于n行来说,每行必须恰好 ...

  3. 【bzoj4883】[Lydsy2017年5月月赛]棋盘上的守卫 最小环套树森林

    题目描述 在一个n*m的棋盘上要放置若干个守卫.对于n行来说,每行必须恰好放置一个横向守卫:同理对于m列来说,每列必须恰好放置一个纵向守卫.每个位置放置守卫的代价是不一样的,且每个位置最多只能放置一个 ...

  4. BZOJ4886: [Lydsy1705月赛]叠塔游戏(环套树森林&贪心)

    4886: [Lydsy1705月赛]叠塔游戏 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 198  Solved: 76[Submit][Stat ...

  5. BZOJ1124 POI2008枪战Maf(环套树+贪心)

    每个点出度都为1,可以发现这张图其实是个环套树森林,树中儿子指向父亲,环上边同向. 首先自环肯定是没救的,先抬出去. 要使死亡人数最多的话,显然若一个点入度为0其不会死亡,而一个孤立的环至少会留下一个 ...

  6. BZOJ4883 棋盘上的守卫(环套树+最小生成树)

    容易想到网络流之类的东西,虽然范围看起来不太可做,不过这提供了一种想法,即将行列分别看做点.那么我们需要找一种连n+m条边的方案,使得可以从每条边中选一个点以覆盖所有点.显然每个点至少要连一条边.于是 ...

  7. BZOJ 1791 岛屿(环套树+单调队列DP)

    题目实际上是求环套树森林中每个环套树的直径. 对于环套树的直径,可以先找到这个环套树上面的环.然后把环上的每一点都到达的外向树上的最远距离作为这个点的权值. 那么直径一定就是从环上的某个点开始,某个点 ...

  8. BZOJ 1040 骑士(环套树DP)

    如果m=n-1,显然这就是一个经典的树形dp. 现在是m=n,这是一个环套树森林,破掉这个环后,就成了一个树,那么这条破开的边连接的两个顶点不能同时选择.我们可以对这两个点进行两次树形DP根不选的情况 ...

  9. HDU 6251 Inkopolis(2017 CCPC-Final,I题,环套树 + 结论)

    题目链接 HDU 6251 题意 给出一个$N$个点$N$条边的无向图.然后给出$M$个操作,每个操作为$(x, y, z)$,表示把连接 $x$和$y$的边的颜色改成$z$. 求这张无向图中所有边的 ...

随机推荐

  1. Mysql查看锁等信息SQL语句

    查看锁等信息,包括锁信息: select "HOLD:",ph.id h_processid,trh.trx_id h_trx_id,trh.trx_started h_start ...

  2. ubuntu built-in display 产生的一个原因

    在没有禁用开源的显卡驱动 nouveau 下,从 apt 安装了nvidia的驱动,导致了后面开机后,系统不能正确的识别到显示器,整个界面分辨率变的非常小,在设置菜单中的显示设置中也不能调节分辨率,并 ...

  3. LeetCode969. 煎饼排序

    问题:969. 煎饼排序 给定数组 A,我们可以对其进行煎饼翻转:我们选择一些正整数 k <= A.length,然后反转 A 的前 k 个元素的顺序.我们要执行零次或多次煎饼翻转(按顺序一次接 ...

  4. 读键值对封装成Map

    描述: 有配置文件address_relation.properties,记录地址关系,有如下数据:ZSSS=ZS%,ZSPD, 封装到Map代码如下: public static void main ...

  5. <Docker学习>4. docker容器的使用

    简单的说, 容器是独立运行的一个或一组应用, 以及它们的运行态环境. 对应的, 虚拟机可以理解为模拟运行的一整套操作系统( 提供了运行态环境和其他系统环境) 和跑在上面的应用.容器的运行是基于镜像的. ...

  6. 翻译 | “扩展asm”——用C表示操作数的汇编程序指令

    本文翻译自GNU关于GCC7.2.0版本的官方说明文档,第6.45.2小节.供查阅讨论,如有不当处敬请指正…… 通过扩展asm,可以让你在汇编程序中使用C中的变量,并从汇编代码跳转到C语言标号.在汇编 ...

  7. K-均值聚类——电影类型

    K-均值聚类 K-均值算法试图将一系列样本分割成K个不同的类簇(其中K是模型的输入参数),其形式化的目标函数称为类簇内的方差和(within cluster sum of squared errors ...

  8. Android Studio的Log日志调试

    本人菜鸟一枚,极大发挥了搜索的功能.现记录一番,以备后患. 用断点真的很烦,因为之前写linux的时候,就是用最蠢但是也是挺有帮助的printf()来进行调试. 其实用Log输出日志的原理也是差不多的 ...

  9. 20145202马超《Java程序设计》第十周学习总结

    一.网络编程 1.网络概述 网络编程就是在两个或两个以上的设备(例如计算机)之间传输数据.程序员所作的事情就是把数据发送到指定的位置,或者接收到指定的数据,这个就是狭义的网络编程范畴.在发送和接收数据 ...

  10. ClassNotFountException 与 NoClassDefineError

    一 知识准备 NoClassDefFoundError:正如它们的名字所说明的是一个错误 (Error),而ClassNotFoundException是一个异常.正如上一章节所说Exception和 ...