<转自原博客> NOIP2008 传纸条
小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了。幸运的是,他们可以通过传纸条来进行交流。纸条要经由许多同学传到对方手里,小渊坐在矩阵的左上角,坐标(1,1),小轩坐在矩阵的右下角,坐标(m,n)。从小渊传到小轩的纸条只可以向下或者向右传递,从小轩传给小渊的纸条只可以向上或者向左传递。 在活动进行中,小渊希望给小轩传递一张纸条,同时希望小轩给他回复。班里每个同学都可以帮他们传递,但只会帮他们一次,也就是说如果此人在小渊递给小轩纸条的时候帮忙,那么在小轩递给小渊的时候就不会再帮忙。反之亦然。 还有一件事情需要注意,全班每个同学愿意帮忙的好感度有高有低(注意:小渊和小轩的好心程度没有定义,输入时用0表示),可以用一个0-100的自然数来表示,数越大表示越好心。小渊和小轩希望尽可能找好心程度高的同学来帮忙传纸条,即找到来回两条传递路径,使得这两条路径上同学的好心程度只和最大。现在,请你帮助小渊和小轩找到这样的两条路径。
题解:如果将题目简化为一个纸条从1,1到n,m,则dp[i][j]即可简单做出,所以类比可以想到四维的dp[i][j][k][h]表示i,j和k,h的纸条(因为从n,m到1,1等于从1,1到n,m,所以两个纸条可以都从1,1出发),那么我们就可以用O(n^4)的复杂度做出。我们还可以根据i+j=k+h将数组和时间复杂度简化到O(n^3)。 另外,我们都会注意到两个纸条是不能重合的,所以我们来看这样一个神奇的事情:

对于这个有相交的两条路径来说,他一定不是最优解,因为如下这样的路径保证优于相交,那么对于dp[i][j][i][j]来说,我们就不用管它了,只要保证他不会将该点好心值加了两遍或者遇到他取完max直接跳过都可以哦

所以在转移方程为: dp[i][j][k]=max(dp[i-1][j][k],dp[i-1][j][k-1],dp[i][j-1][k],dp[i][j-1][k-1])+w[i][j]+w[k][h]; 并且if (i==k && j==h) dp[i][j][k]-=w[i][j]即可 AC代码:
#include<cstdio>
#include<algorithm>
using namespace std;
int dp[55][55][55],n,m,mp[55][55],h,w[55][55]; int mx(int a,int b,int c,int d){return max(max(a,b),max(c,d));} int main()
{
scanf("%d%d",&m,&n);
for (int i=1;i<=m;i++)
for (int j=1;j<=n;j++)
scanf("%d",&w[i][j]);
for (int i=1;i<=m;i++)
for (int j=1;j<=n;j++)
for (int k=1;k<=m;k++)
{
if (i+j>k) h=i+j-k;else continue;
dp[i][j][k]=mx(dp[i-1][j][k-1],dp[i][j-1][k-1],dp[i-1][j][k],dp[i][j-1][k]);
if (i==k && j==h) continue;
dp[i][j][k]+=w[i][j]+w[k][h];
//if (i==k && j==h) dp[i][j][k]-=w[k][h];
}
printf("%d",dp[m][n][m]);
return 0;
}
<转自原博客> NOIP2008 传纸条的更多相关文章
- NOIP2008 传纸条
题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是 ...
- NOIP2008传纸条[DP]
题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是 ...
- CH5103 [NOIP2008]传纸条[线性DP]
给定一个 N*M 的矩阵A,每个格子中有一个整数.现在需要找到两条从左上角 (1,1) 到右下角 (N,M) 的路径,路径上的每一步只能向右或向下走.路径经过的格子中的数会被取走.两条路径不能经过同一 ...
- NOIP2008 传纸条(DP及滚动数组优化)
传送门 这道题有好多好多种做法呀……先说一下最暴力的,O(n^4的做法) 我们相当于要找两条从左上到右下的路,使路上的数字和最大.所以其实路径从哪里开始走并不重要,我们就直接假设全部是从左上出发的好啦 ...
- 题解【AcWing275】[NOIP2008]传纸条
题面 首先有一个比较明显的状态设计:设 \(dp_{x1,y1,x2,y2}\) 表示第一条路线走到 \((x1,y1)\) ,第二条路线走到 \((x2,y2)\) 的路径上的数的和的最大值. 这个 ...
- 洛谷P1006 NOIP提高组2008 传纸条
P1006 传纸条 题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n 列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无 ...
- NOIP2008 T3 传纸条 解题报告——S.B.S.
题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是 ...
- [NOIP2008] 提高组 洛谷P1006 传纸条
题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是 ...
- 【NOIP2008】传纸条
[描述] Description 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就 ...
随机推荐
- javascript中call,apply,bind的使用
不同点: 1.call():传参方式跟bind一样(都是以逗号隔开的传参方式),但是跟apply(以数组的形式传参)不一样, 2.bind(): 此方法应用后的情形跟call和apply不一样.该方法 ...
- MySQL超大表如何提高count速度
经常用到count统计记录数,表又超级大,这时候sql执行很慢,就是走索引,也是很慢的,怎么办呢? 1.这个时候我们就要想为什么这么慢:根本原因是访问的数据量太大,就算只计算记录数也是很慢的. 2.如 ...
- Linux中的代码编辑器vim
Vim的三种工作模式 命令行模式 插入模式 底行模式 Vim 的命令行模式 命令行模式是进入vim后的初始模式,在该模式下主要是使用方向键来移动光标的位置,并通过相应的命令来进行文字的编辑. 切换方法 ...
- 图解HTTP总结(3)——HTTP报文内的HTTP信息
HTTP通信过程包括从客户端发往服务端的请求及从服务器端返回客户端的响应. 用于HTTP协议交互的信息被称为HTTP报文.客户端的HTTP报文叫做请求报文,服务器端的叫做响应报文.HTTP报文本身是多 ...
- linux基础命令3(man)
Type:显示指定的命令是那种类型. Linux下有两种模式的时间 date:用于系统时间管理.(软件操作的系统时 ...
- Pandas 数据读取
1.读取table # 读取普通分隔数据:read_table # 可以读取txt,csv import os os.chdir('F:/') #首先设置一下读取的路径 data1 = pd.read ...
- 【转】android makefile文件分析
Makefile的规则如下: target ... : prerequisites ... command ... ... target可以是一个目标文件,也可以是Object File(例如hell ...
- 《Cracking the Coding Interview》——第9章:递归和动态规划——题目9
2014-03-20 04:08 题目:八皇后问题. 解法:DFS解决. 代码: // 9.9 Eight-Queen Problem, need I say more? #include <c ...
- nginx配置及HTTPS配置示例
一.nginx简单配置示例 user www www; worker_processes ; #error_log logs/error.log; #error_log logs/error.log ...
- 【Minimum Window】cpp
题目: Given a string S and a string T, find the minimum window in S which will contain all the charact ...