BZOJ1009

妙!

推荐这篇题解: https://www.luogu.org/blog/Edgration/solution-p3193

考虑设计dp,设$f_{i, j}$表示长串匹配到i,短串匹配到j的方案数,初值有$f_{0,0} = 1$

    那么最后的答案   $ans = \sum_{i = 0}^{m - 1} f_{n,i}$

考虑转移,假设当前填到第i位,有一种填法能使$f_{i,j}$转移到$f_{i + 1, j + 1}$,那么填剩下的数字全部都转移到$f_{i + 1,0}$吗?

错!这就是一开始想错的地方,填不一样的数字并不一定是转移到0的匹配位置,而是考虑转移到以j结尾的后缀的最长前缀!

设$g_{i, j}$表示从i的匹配长度转移到j的匹配长度的方案数,有转移:

      $f_{i, j} = \sum_{k = 0}^{m - 1}f_{i - 1, k} * g_{k, j}$

因为给出的短串是恒定的,所以g数组的值也是恒定的,而找与后缀相匹配的最长前缀,肯定是想到kmp啦

然而这样还是不足以通过本题,再次观察这个方程,发现这就是一个矩阵乘法的形式,相当于把f看成一个1*m的矩阵F,把g看成一个m*m的转移矩阵G。

      $F' = F * G^{n}$ 用G转移Fn次

到此为止,本题全部解决,时间复杂度$O(m^{2}logn)$

Code:

#include <cstdio>
#include <cstring>
using namespace std; const int N = ; int n, m, P, nxt[N], mat[N][N];
char str[N]; inline void prework() {
nxt[] = nxt[] = ;
for(int i = , j = ; i <= m; i++) {
for(; j > && str[i] != str[j + ]; j = nxt[j]);
if(str[i] == str[j + ]) j++;
nxt[i] = j;
} for(int i = ; i < m; i++) {
for(int j = ''; j <= ''; j++) {
int tmp = i;
for(; tmp > && str[tmp + ] != j; tmp = nxt[tmp]);
if(str[tmp + ] == j) tmp++;
if(tmp < m) mat[i][tmp]++;
}
}
} inline void work(int &x, int y) {
x = (x + y % P) % P;
} struct Matrix {
int s[N][N]; inline void init() {
memset(s, , sizeof(s));
} friend Matrix operator * (const Matrix &x, const Matrix &y) {
Matrix res;
res.init();
for(int i = ; i < m; i++)
for(int j = ; j < m; j++)
for(int k = ; k < m; k++)
work(res.s[i][j], x.s[i][k] * y.s[k][j]);
return res;
} inline Matrix pow(int y) {
Matrix res = *this, x = *this;
for(y--; y > ; y >>= ) {
if(y & ) res = res * x;
x = x * x;
}
return res;
} } f, g; int main() {
scanf("%d%d%d", &n, &m, &P);
scanf("%s", str + );
prework(); for(int i = ; i < m; i++)
for(int j = ; j < m; j++)
g.s[i][j] = mat[i][j];
g = g.pow(n); f.s[][] = ; f = f * g; int ans = ;
for(int i = ; i < m; i++)
work(ans, f.s[][i]);
printf("%d\n", ans); return ;
}

Luogu 3193 [HNOI2008]GT考试的更多相关文章

  1. luogu P3193 [HNOI2008]GT考试

    传送门 单串匹配显然用\(kmp\) 一个暴力的dp是设\(f_{i,j}\),表示前\(i\)位,正在匹配给定串第\(j\)位的方案,转移就枚举下一位放什么,然后使用\(kmp\)看会匹配到给定串的 ...

  2. [HNOI2008]GT考试(kmp,dp,矩阵乘法)

    [HNOI2008]GT考试(luogu) Description 求有多少个n位的数字串不包含m位的字符串(范围 n <= 1e9 n<=1e9, m <= 20m<=20) ...

  3. 1009: [HNOI2008]GT考试

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec Memory Limit: 162 MB Description 阿申准备报名参加GT考试,准考证号为N位数\(X_1X_ ...

  4. 【bzoj1009】[HNOI2008]GT考试

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3018  Solved: 1856[Submit][Statu ...

  5. BZOJ_1009_[HNOI2008]_GT考试_(动态规划+kmp+矩阵乘法优化+快速幂)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1009 字符串全部由0~9组成,给出一个串s,求一个长度为n的串,不包含s的种类有多少. 分析 ...

  6. BZOJ 1009: [HNOI2008]GT考试( dp + 矩阵快速幂 + kmp )

    写了一个早上...就因为把长度为m的也算进去了... dp(i, j)表示准考证号前i个字符匹配了不吉利数字前j个的方案数. kmp预处理, 然后对于j进行枚举, 对数字0~9也枚举算出f(i, j) ...

  7. [HNOI2008] GT考试

    [HNOI2008] GT考试 标签 : DP 矩阵乘法 题目链接 题意 n位数中不出现一个子串的方案数. 题解 \(设dp[i][j]\)为前i位匹配到j时的合法方案数.(所谓合法,就是不能有别的匹 ...

  8. BZOJ_1009_[HNOI2008]GT考试_KMP+矩阵乘法

    BZOJ_1009_[HNOI2008]GT考试_KMP+矩阵乘法 Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考 ...

  9. BZOJ1009 [HNOI2008]GT考试 矩阵

    去博客园看该题解 题目 [bzoj1009][HNOI2008]GT考试 Description 阿申准备报名参加GT考试,准考证号为N位数X1X2….Xn(0<=Xi<=9),他不希望准 ...

随机推荐

  1. LeetCode 293. Flip Game

    原题链接在这里:https://leetcode.com/problems/flip-game/description/ 题目: You are playing the following Flip ...

  2. How To Uninstall Software Using The Ubuntu Command Line

    How To Uninstall Software Using The Ubuntu Command Line Uninstall Ubuntu Software Using The Terminal ...

  3. 学习动态性能表(7)--v$process

    学习动态性能表 第七篇--V$PROCESS  2007.5.30 本视图包含当前系统oracle运行的所有进程信息.常被用于将oracle或服务进程的操作系统进程ID与数据库session之间建立联 ...

  4. redis之 centos 6.7 下安装 redis-3.2.5

    前期准备:1. 操作系统需要安装 gcc 包 与  TCL 库, 通过配置本地 yum 源 ,yum -y install gcc . yum -y install tcl安装2. 下载 redis ...

  5. fastjson --JSONObject 和JSONArray 转换

    fastjson解析:resultValue=[    {        "total": 1,        "saleLists": [           ...

  6. Java创建AD(Active Directory)域控制器用户 (未测)

    import java.util.Hashtable; import javax.naming.ldap.*; import javax.naming.directory.*; import java ...

  7. Unix文件指令-Mac终端命令应用

    pwd:查看当前文件夹 cd: 打开文件夹 ls:列出当前路径下所有文件 ls -l :列出当前路径下的所有文件详细信息. mkdir: 新建文件夹 touch: 创建文件   eg: touch t ...

  8. HDU1576(扩展欧几里得)

    A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  9. MySQL 5.6 date 与 string 的转换和比较

    我们有张表,表中有一个字段 dpt_date ,SQL 类型为 date,表示离开日期. 我们将 dpt_date 与字符串 ‘2016-03-09’ 进行比较,发现效率低于 dpt_date 转换为 ...

  10. linux参数之max_map_count

    “This file contains the maximum number of memory map areas a process may have. Memory map areas are ...