BZOJ1009

妙!

推荐这篇题解: https://www.luogu.org/blog/Edgration/solution-p3193

考虑设计dp,设$f_{i, j}$表示长串匹配到i,短串匹配到j的方案数,初值有$f_{0,0} = 1$

    那么最后的答案   $ans = \sum_{i = 0}^{m - 1} f_{n,i}$

考虑转移,假设当前填到第i位,有一种填法能使$f_{i,j}$转移到$f_{i + 1, j + 1}$,那么填剩下的数字全部都转移到$f_{i + 1,0}$吗?

错!这就是一开始想错的地方,填不一样的数字并不一定是转移到0的匹配位置,而是考虑转移到以j结尾的后缀的最长前缀!

设$g_{i, j}$表示从i的匹配长度转移到j的匹配长度的方案数,有转移:

      $f_{i, j} = \sum_{k = 0}^{m - 1}f_{i - 1, k} * g_{k, j}$

因为给出的短串是恒定的,所以g数组的值也是恒定的,而找与后缀相匹配的最长前缀,肯定是想到kmp啦

然而这样还是不足以通过本题,再次观察这个方程,发现这就是一个矩阵乘法的形式,相当于把f看成一个1*m的矩阵F,把g看成一个m*m的转移矩阵G。

      $F' = F * G^{n}$ 用G转移Fn次

到此为止,本题全部解决,时间复杂度$O(m^{2}logn)$

Code:

#include <cstdio>
#include <cstring>
using namespace std; const int N = ; int n, m, P, nxt[N], mat[N][N];
char str[N]; inline void prework() {
nxt[] = nxt[] = ;
for(int i = , j = ; i <= m; i++) {
for(; j > && str[i] != str[j + ]; j = nxt[j]);
if(str[i] == str[j + ]) j++;
nxt[i] = j;
} for(int i = ; i < m; i++) {
for(int j = ''; j <= ''; j++) {
int tmp = i;
for(; tmp > && str[tmp + ] != j; tmp = nxt[tmp]);
if(str[tmp + ] == j) tmp++;
if(tmp < m) mat[i][tmp]++;
}
}
} inline void work(int &x, int y) {
x = (x + y % P) % P;
} struct Matrix {
int s[N][N]; inline void init() {
memset(s, , sizeof(s));
} friend Matrix operator * (const Matrix &x, const Matrix &y) {
Matrix res;
res.init();
for(int i = ; i < m; i++)
for(int j = ; j < m; j++)
for(int k = ; k < m; k++)
work(res.s[i][j], x.s[i][k] * y.s[k][j]);
return res;
} inline Matrix pow(int y) {
Matrix res = *this, x = *this;
for(y--; y > ; y >>= ) {
if(y & ) res = res * x;
x = x * x;
}
return res;
} } f, g; int main() {
scanf("%d%d%d", &n, &m, &P);
scanf("%s", str + );
prework(); for(int i = ; i < m; i++)
for(int j = ; j < m; j++)
g.s[i][j] = mat[i][j];
g = g.pow(n); f.s[][] = ; f = f * g; int ans = ;
for(int i = ; i < m; i++)
work(ans, f.s[][i]);
printf("%d\n", ans); return ;
}

Luogu 3193 [HNOI2008]GT考试的更多相关文章

  1. luogu P3193 [HNOI2008]GT考试

    传送门 单串匹配显然用\(kmp\) 一个暴力的dp是设\(f_{i,j}\),表示前\(i\)位,正在匹配给定串第\(j\)位的方案,转移就枚举下一位放什么,然后使用\(kmp\)看会匹配到给定串的 ...

  2. [HNOI2008]GT考试(kmp,dp,矩阵乘法)

    [HNOI2008]GT考试(luogu) Description 求有多少个n位的数字串不包含m位的字符串(范围 n <= 1e9 n<=1e9, m <= 20m<=20) ...

  3. 1009: [HNOI2008]GT考试

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec Memory Limit: 162 MB Description 阿申准备报名参加GT考试,准考证号为N位数\(X_1X_ ...

  4. 【bzoj1009】[HNOI2008]GT考试

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3018  Solved: 1856[Submit][Statu ...

  5. BZOJ_1009_[HNOI2008]_GT考试_(动态规划+kmp+矩阵乘法优化+快速幂)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1009 字符串全部由0~9组成,给出一个串s,求一个长度为n的串,不包含s的种类有多少. 分析 ...

  6. BZOJ 1009: [HNOI2008]GT考试( dp + 矩阵快速幂 + kmp )

    写了一个早上...就因为把长度为m的也算进去了... dp(i, j)表示准考证号前i个字符匹配了不吉利数字前j个的方案数. kmp预处理, 然后对于j进行枚举, 对数字0~9也枚举算出f(i, j) ...

  7. [HNOI2008] GT考试

    [HNOI2008] GT考试 标签 : DP 矩阵乘法 题目链接 题意 n位数中不出现一个子串的方案数. 题解 \(设dp[i][j]\)为前i位匹配到j时的合法方案数.(所谓合法,就是不能有别的匹 ...

  8. BZOJ_1009_[HNOI2008]GT考试_KMP+矩阵乘法

    BZOJ_1009_[HNOI2008]GT考试_KMP+矩阵乘法 Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考 ...

  9. BZOJ1009 [HNOI2008]GT考试 矩阵

    去博客园看该题解 题目 [bzoj1009][HNOI2008]GT考试 Description 阿申准备报名参加GT考试,准考证号为N位数X1X2….Xn(0<=Xi<=9),他不希望准 ...

随机推荐

  1. KVM- 存储池配置

    1.创建基于文件夹的存储池(目录) [root@kvm_1 ~]# mkdir -p /data/vmfs 2.定义存储池与其目录 [root@kvm_1 ~]# virsh pool-define- ...

  2. Alex and broken contest CodeForces - 877A

    /* Name: Copyright: Author: Date: 2018/5/2 10:45:16 Description: 要求出现一个朋友的名字,仅一次 */ #include <ios ...

  3. 网络爬虫必备知识之concurrent.futures库

    就库的范围,个人认为网络爬虫必备库知识包括urllib.requests.re.BeautifulSoup.concurrent.futures,接下来将结对concurrent.futures库的使 ...

  4. GO语言list剖析

    GO语言list剖析 本节内容 使用方法 list提供的方法 源码剖析 1. 使用方法 在GO语言的标准库中,提供了一个container包,这个包中提供了三种数据类型,就是heap,list和rin ...

  5. rabbitmq的vhost与用户管理

    当我们在创建用户时,会指定用户能访问一个虚拟机,并且该用户只能访问该虚拟机下的队列和交换机,如果没有指定,默认的是”/”;一个rabbitmq服务器上可以运行多个vhost,以便于适用不同的业务需要, ...

  6. AngularJs出现错误Error: [ng:areq]

    1.没有对应的控制器 2.有控制器但是路径没有配对

  7. 【转】Cron表达式简介

    Cron表达式是一个字符串,字符串以5或6个空格隔开,分为6或7个域,每一个域代表一个含义,Cron有如下两种语法格式: Seconds Minutes Hours DayofMonth Month ...

  8. PCIE编程1:lspci操作

    lspci 是一个用来显示系统中所有PCI总线设备或连接到该总线上的所有设备的工具. 列出所有的PCIE设备: lspci 选项: -v 使得 lspci 以冗余模式显示所有设备的详细信息. -vv ...

  9. Java并发 两个线程交替执行和死锁

    今天看到一个题:两个线程交替打印奇数和偶数,即一个线程打印奇数,另一个打印偶数,交替打印从1到100.想了下有多重实现方法. wait和notify方法: public class OddEven { ...

  10. Spring Boot 集成RabbitMQ

    在Spring Boot中整合RabbitMQ是非常容易的,通过在Spring Boot应用中整合RabbitMQ,实现一个简单的发送.接收消息的例子. 首先需要启动RabbitMQ服务,并且add一 ...