[matlab]bp神经网络工具箱学习笔记
基本就三个函数:
newff():创建一个bp神经网络
train():训练函数
sim():仿真函数
同时具有可视化界面,但目前不知道可视化界面如何进行仿真,且设置不太全
工具箱:Neural net fitting
textread使用方法:http://blog.sina.com.cn/s/blog_9e67285801010bju.html
ex1.
clear;
clc;
%注意P矩阵,matlab默认将一列作为一个输入
P=[0.5152 0.8173 1.0000 ;
0.8173 1.0000 0.7308;
1.0000 0.7308 0.1390;
0.7308 0.1390 0.1087;
0.1390 0.1087 0.3520;
0.1087 0.3520 0.0000;]';
%以第四个月的销售量归一化处理后作为目标向量
T=[0.7308 0.1390 0.1087 0.3520 0.0000 0.3761];
%创建一个BP神经网络,每一个输入向量的取值范围为[0 ,1],隐含层有5个神经元,输出层有一个神经元,隐含层的激活函数为tansig,输出层的激活函数为%logsig,训练函数为梯度下降函数,即标准学习算法
net=newff([0 1;0 1;0 1],[5,1],{'tansig','logsig'},'traingd');%minmax(P)
net.trainParam.epochs=1500;%最大迭代次数.
net.trainParam.goal=0.01; %训练的误差精度
%设置学习速率为0.1
LP.lr=0.1;
net=train(net,P,T);
a=[0.1;0.2;0.3];
a=premnmx(a);
b=sim(net,a);
b=postmnmx(b,0,1);
b
ex2.
P=[3.2 3.2 3 3.2 3.2 3.4 3.2 3 3.2 3.2 3.2 3.9 3.1 3.2;
9.6 10.3 9 10.3 10.1 10 9.6 9 9.6 9.2 9.5 9 9.5 9.7;
3.45 3.75 3.5 3.65 3.5 3.4 3.55 3.5 3.55 3.5 3.4 3.1 3.6 3.45;
2.15 2.2 2.2 2.2 2 2.15 2.14 2.1 2.1 2.1 2.15 2 2.1 2.15;
140 120 140 150 80 130 130 100 130 140 115 80 90 130;
2.8 3.4 3.5 2.8 1.5 3.2 3.5 1.8 3.5 2.5 2.8 2.2 2.7 4.6;
11 10.9 11.4 10.8 11.3 11.5 11.8 11.3 11.8 11 11.9 13 11.1 10.85;
50 70 50 80 50 60 65 40 65 50 50 50 70 70];
T=[2.24 2.33 2.24 2.32 2.2 2.27 2.2 2.26 2.2 2.24 2.24 2.2 2.2 2.35];
[p1,minp,maxp,t1,mint,maxt]=premnmx(P,T); %创建网络
net=newff(minmax(P),[8,6,1],{'tansig','tansig','purelin'},'trainlm');%此时的minmax函数是正确的,minmax是在每一行取最大最小值,而这也是有意义的
%设置训练次数
net.trainParam.epochs = 5000;
%设置收敛误差
net.trainParam.goal=0.0000001;
%训练网络
[net,tr]=train(net,p1,t1);
%TRAINLM, Epoch 0/5000, MSE 0.533351/1e-007, Gradient 18.9079/1e-010
%TRAINLM, Epoch 24/5000, MSE 8.81926e-008/1e-007, Gradient 0.0022922/1e-010
%TRAINLM, Performance goal met. %输入数据
a=[3.0;9.3;3.3;2.05;100;2.8;11.2;50];
%将输入数据归一化
a=premnmx(a);
%放入到网络输出数据
b=sim(net,a);
%将得到的数据反归一化得到预测数据
c=postmnmx(b,mint,maxt);
c
ex3.
close all;
clear;
clc;
%读取训练数据
[f1,f2,f3,f4,class] = textread('Train.txt','%f%f%f%f%d',75,'delimiter',',');
%特征值归一化
[input,minI,maxI] = premnmx( [f1,f2,f3,f4 ]') ;
%构造输出矩阵
s=length(class) ;
output=zeros(s,3) ;
for i=1:s
output(i,class(i)) = 1 ;
end
%output=class';
%创建神经网络
net = newff( minmax(input),[10 3],{ 'logsig','purelin' },'traingdx' );
%设置训练参数
net.trainparam.show=50 ;
net.trainparam.epochs=500 ;
net.trainparam.goal=0.01 ;
net.trainParam.lr=0.01 ;
%开始训练
net=train(net,input,output') ; %读取测试数据
[t1 t2 t3 t4 c]=textread('Test.txt','%f%f%f%f%d',75,'delimiter',',');
%测试数据归一化
testInput=tramnmx([t1,t2,t3,t4]',minI,maxI);
%仿真
Y = sim(net,testInput)
%统计识别正确率
[s1,s2]=size( Y ) ;
hitNum=0 ;
for i=1:s2
[m,Index]=max( Y(:,i));
if(Index==c(i))
hitNum=hitNum+1;
end
end
sprintf('识别率是 %3.3f%%',100*hitNum/s2)
拟合曲线:


[matlab]bp神经网络工具箱学习笔记的更多相关文章
- Matlab的BP神经网络工具箱及其在函数逼近中的应用
1.神经网络工具箱概述 Matlab神经网络工具箱几乎包含了现有神经网络的最新成果,神经网络工具箱模型包括感知器.线性网络.BP网络.径向基函数网络.竞争型神经网络.自组织网络和学习向量量化网络.反馈 ...
- Matlab神经网络工具箱学习之一
1.神经网络设计的流程 2.神经网络设计四个层次 3.神经网络模型 4.神经网络结构 5.创建神经网络对象 6.配置神经网络的输入输出 7.理解神经网络工具箱的数据结构 8.神经网络训练 1.神经网络 ...
- 卷积神经网络(CNN)学习笔记1:基础入门
卷积神经网络(CNN)学习笔记1:基础入门 Posted on 2016-03-01 | In Machine Learning | 9 Comments | 14935 Vie ...
- paper 75:使用MATLAB的神经网络工具箱创建神经网络
% 生成训练样本集 clear all; clc; P=[110 0.807 240 0.2 15 1 18 2 1.5; 110 2.865 240 0.1 15 2 12 1 2; 110 2.5 ...
- BP神经网络算法学习
BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是眼下应用最广泛的神经网络模型之中的一个 ...
- MATLAB的神经网络工具箱介绍
一.使用matlab2010b以后的版本会有完整的神经网络工具箱,使用nnstart可以调出toolbox,然后选择需要的功能,导入数据,选择训练参数和每层神经元个数,最后训练会输出网络与结果. 二. ...
- MATLAB——BP神经网络
1.使用误差反向传播(error back propagation )的网络就叫BP神经网络 2.BP网络的特点: 1)网络由多层构成,层与层之间全连接,同一层之间的神经元无连接 . 2)BP网络的传 ...
- [matlab]机器学习及SVM工具箱学习笔记
机器学习与神经网络的关系: 机器学习是目的,神经网络是算法.神经网络是实现机器学习的一种方法,平行于SVM. 常用的两种工具:svm tool.libsvm SVM分为SVC和SVR,svc是专门用来 ...
- Matlab神经网络工具箱学习之二
螃蟹的分类 这个例子的目的是根据螃蟹的品种.背壳的长宽等等属性来判断螃蟹的性别,雄性还是雌性. 训练数据一共有六个属性: species, frontallip, rearwidth, length, ...
随机推荐
- 图片加载控件Fresco
使用教程:https://www.fresco-cn.org/docs/index.html https://github.com/facebook/fresco application初始化fre ...
- Gem简介
Rubyems:简称gems是一个用于对rails组建近些年个打包的ruby打包系统,它提供了一个分发ruby程序喝库的标准格式,还提供了一个管理程序包的工具.Rubyems的功能类似于linux下的 ...
- nodejs模块之http&&url
我们使用nodejs中的http模块来进行网络操作 一.什么是HTTP协议: 超文本传输协议(HyperText Transfer Protocol)HTTP假定其下层协议提供可靠传输. 因此,任何能 ...
- 【leetcode刷题笔记】Jump Game II
Given an array of non-negative integers, you are initially positioned at the first index of the arra ...
- stm32非操作系统开发和带uCos的开发的区别,及一些解析
从文件角度来看core_cm4.h和stm32f4xx.h分别从内核寄存器和外设寄存器来定义其地址和结构体,是用c语言访问硬件必须的文件,所以这两个文件不论是否带操作系统,都是必须包含进工程的. re ...
- POJ3614 贪心+优先队列
题意:m头牛每头牛有minspf和maxspf,n种spf为spf[i]的防晒霜每种l[i]瓶,尽可能给数量多的牛涂防晒霜,每头牛最多涂一瓶. 思路:贪心想法,实现是每次取出minspf<=sp ...
- SQL 优化案例
create or replace procedure SP_GET_NEWEST_CAPTCHA( v_ACCOUNT_ID in VARCHAR2, --接收短信的手机号 v_Tail_num i ...
- 英语发音规则---字母组合oo的发音规律
英语发音规则---字母组合oo的发音规律 一.总结 一句话总结:在英语单词中,字母组合oo多数读长音/u:/,少数读短音/ʊ/.另外,还有极少数的特殊情况读/ʌ/, 在英语单词中,字母组合oo多数读长 ...
- getline()函数详解 (2013-03-26 17:19:58)
学习C++的同学可能都会遇到一个getline()函数,譬如在C++premer中,标准string类型第二小节就是“用getline读取整行文本”.书上给的程序如下: int main() { ...
- Python基础-os、sys模块
一,os模块import os ,sysos.system('ipconfig')#执行操作系统命令,获取不到返回结果 os.popen()#也可以执行操作系统命令,可以返回命令执行结果,但需要rea ...