题意比较费劲:输入看起来很麻烦。处理括号冒号的时候是用%1s就可以。还有就是注意它有根节点。。。Q次查询

在线st算法

/*************************************************************************
> File Name: 3.cpp
> Author: Howe_Young
> Mail: 1013410795@qq.com
> Created Time: 2015年10月08日 星期四 19时03分30秒
************************************************************************/ #include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm> using namespace std;
typedef long long ll;
const int maxn = ;
struct Edge {
int to, next;
}edge[maxn<<];
int tot, head[maxn];
int ans[maxn];
int Euler[maxn<<];
int R[maxn];
int dep[maxn];
int dp[maxn<<][]; // RMQ
bool in[maxn];
int cnt;
void init()
{
cnt = ;
tot = ;
memset(head, -, sizeof(head));
memset(ans, , sizeof(ans));
memset(in, false, sizeof(in));
}
void addedge(int u, int v)
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
}
void dfs(int u, int depth)
{
Euler[++cnt] = u;
R[u] = cnt;
dep[cnt] = depth;
for (int i = head[u]; i != -; i = edge[i].next)
{
int v = edge[i].to;
dfs(v, depth + );
Euler[++cnt] = u;
dep[cnt] = depth;
}
} void RMQ(int n)
{
for (int i = ; i <= n; i++) dp[i][] = i;
int m = (int)(log(n) / log());
for (int j = ; j <= m; j++)
{
for (int i = ; i + ( << j) - <= n; i++)
dp[i][j] = dep[dp[i][j - ]] < dep[dp[i + ( << (j - ))][j - ]] ? dp[i][j - ] : dp[i + ( << (j - ))][j - ];
}
}
int query(int u, int v)
{
int l = R[u], r = R[v];
if (l > r) swap(l, r);
int k = (int)(log(r - l + ) / log());
int lca = dep[dp[l][k]] < dep[dp[r - ( << k) + ][k]] ? dp[l][k] : dp[r - ( << k) + ][k];
return Euler[lca];
}
int main()
{
int n;
while (~scanf("%d", &n))
{
init();
char s1[], s2[];
int u, v, m;
for (int i = ; i < n; i++)
{
scanf("%d %1s %1s %d %1s", &u, s1, s1, &m, s2);
for (int j = ; j < m; j++)
{
scanf("%d", &v);
addedge(u, v);
in[v] = true;
}
}
for (int i = ; i <= n; i++)
if (!in[i])
{
dfs(i, );
break;
}
RMQ(cnt);
int Q;
scanf("%d", &Q);
while (Q--)
{
scanf("%1s %d %d %1s", s1, &u, &v, s2);
ans[query(u, v)]++;
}
for (int i = ; i <= n; i++)
if (ans[i])
printf("%d:%d\n", i, ans[i]);
}
return ;
}

离线tarjan算法:

#include <cstdio>
#include <cstring>
using namespace std;
const int maxn = ;//节点
const int maxm = ;//最大查询数
struct Edge {
int to, next;
}edge[maxn * ];
int tot, head[maxn];
struct Query {
int q, next;
int index;
}query[maxm * ];
int cnt, h[maxn];
int fa[maxn];
int r[maxn];
int ancestor[maxn];
int ans[maxm];
int Q;
bool vis[maxn]; void init(int n)
{
Q = ;
tot = ;
cnt = ;
memset(head, -, sizeof(head));
memset(h, -, sizeof(h));
memset(fa, -, sizeof(fa));
memset(ancestor, , sizeof(ancestor));
memset(vis, false, sizeof(vis));
for (int i = ; i <= n; i++) r[i] = ;
}
void addedge(int u, int v)
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
}
void addquery(int u, int v, int index)
{
query[cnt].q = v;
query[cnt].index = index;
query[cnt].next = h[u];
h[u] = cnt++;
}
int find(int x)
{
if (fa[x] == -) return x;
return fa[x] = find(fa[x]);
}
void Union(int x, int y)
{
int tx = find(x);
int ty = find(y);
if (tx != ty)
{
if (tx < ty)
{
fa[tx] = ty;
r[ty] += r[tx];
}
else
{
fa[ty] = tx;
r[tx] += r[ty];
}
}
}
void LCA(int u)
{
vis[u] = true;
ancestor[u] = u;
for (int i = head[u]; i != -; i = edge[i].next)
{
int v = edge[i].to;
if (vis[v]) continue;
LCA(v);
Union(u, v);
ancestor[find(u)] = u;
}
for (int i = h[u]; i != -; i = query[i].next)
{
int v = query[i].q;
if (vis[v])
{
ans[query[i].index] = ancestor[find(v)];
}
}
}
int res[maxn];
bool in[maxn];
int main()
{
int n;
while (~scanf("%d", &n))
{
init(n);
memset(in, false, sizeof(in));
int u, v, m;
char ch[];
for (int i = ; i <= n; i++)
{
scanf("%d %1s %1s %d %1s", &u, ch, ch, &m, ch);
for (int j = ; j < m; j++)
{
scanf("%d", &v);
in[v] = true;
addedge(u, v);
addedge(v, u);
}
}
int q;
scanf("%d", &q);
while (q--)
{
scanf("%1s %d %d %1s", ch, &u, &v, ch);
addquery(u, v, Q);
addquery(v, u, Q++);
}
int root;
for (int i = ; i <= n; i++)
{
if (!in[i])
{
root = i;
break;
}
}
LCA(root);
memset(res, , sizeof(res));
for (int i = ; i < Q; i++)
res[ans[i]]++;
for (int i = ; i <= n; i++)
if (res[i])
printf("%d:%d\n", i, res[i]);
}
return ;
}

POJ 1470 Closest Common Ancestors(LCA&RMQ)的更多相关文章

  1. poj 1470 Closest Common Ancestors LCA

    题目链接:http://poj.org/problem?id=1470 Write a program that takes as input a rooted tree and a list of ...

  2. POJ 1470 Closest Common Ancestors(LCA 最近公共祖先)

    其实这是一个裸求LCA的题目,我使用的是离线的Tarjan算法,但是这个题的AC对于我来说却很坎坷……首先是RE,我立马想到数组开小了,然后扩大了数组,MLE了……接着把数组调整适当大小,又交了一发, ...

  3. POJ 1470 Closest Common Ancestors LCA题解

    本题也是找LCA的题目,只是要求多次查询.一般的暴力查询就必定超时了,故此必须使用更高级的方法,这里使用Tarjan算法. 本题处理Tarjan算法,似乎输入处理也挺麻烦的. 注意: 由于查询的数据会 ...

  4. POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)

    POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...

  5. POJ 1470 Closest Common Ancestors 【LCA】

    任意门:http://poj.org/problem?id=1470 Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000 ...

  6. POJ 1470 Closest Common Ancestors (LCA,离线Tarjan算法)

    Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 13372   Accept ...

  7. POJ 1470 Closest Common Ancestors (LCA, dfs+ST在线算法)

    Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 13370   Accept ...

  8. POJ 1470 Closest Common Ancestors

    传送门 Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 17306   Ac ...

  9. poj——1470 Closest Common Ancestors

    Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 20804   Accept ...

随机推荐

  1. js时间戳转为日期格式

    转自:http://wyoojune.blog.163.com/blog/static/57093325201131193650725/ 这个在php+mssql(日期类型为datetime)+aja ...

  2. Sass学习

    1.1下载地址: http://rubyinstaller.org/downloads 2.1 安装 SASS是Ruby语言写的,但是两者的语法没有关系.不懂Ruby,照样使用.只是必须先安装Ruby ...

  3. 那些年被我坑过的Python——山外有山(第四章)

    装饰器: 定义: 本质是函数,(装饰其他函数)就是为其他函数添加附加功能原则: 1.不能修改被装饰的函数的源代码 2.不能修改被装饰的函数的调用方式 优点: 装饰器带来的最直观的好处:减少对函数的细化 ...

  4. CodeChef FNCS

    题面:https://www.codechef.com/problems/FNCS 题解: 我们考虑对 n 个函数进行分块,设块的大小为S. 每个块内我们维护当前其所有函数值的和,以及数组中每个元素对 ...

  5. 2661: [BeiJing wc2012]连连看

    Description 凡是考智商的题里面总会有这么一种消除游戏.不过现在面对的这关连连看可不是QQ游戏里那种考眼力的游戏.我们的规则是,给出一个闭区间[a,b]中的全部整数,如果其中某两个数x,y( ...

  6. 工作总结:检查字符串合法性(C++)

    BOOL CLiftCtrlModbusConfigDlg::CheckValid(const CString &str) { ASSERT(str.GetLength() > ); ] ...

  7. Dungeon Master

    poj2251:http://poj.org/problem?id=2251 题意:给你一个三维的立方体,然后给你一个起点,和终点的坐标.然后让你求从起点到终点的最短路程.题解:该题就是求三维的最短路 ...

  8. JAVA线程示范之一种

    线程有两种方法生成,这是其中的一种.. MyRunnable.java public class MyRunnable implements Runnable { public void run() ...

  9. Intra Luma Prediction

    在宏块的帧内预测过程中,有四种宏块类型:I_4x4,I_8x8,I16x16,I_PCM.他们都需要在相邻块做去块滤波之前进行帧内预测. 亮度帧内预测的总体流程 1-4获取当前block的帧内预测模式 ...

  10. Unity NGUI实现序列帧动画播放

    如题,要实现序列帧的播放导入图片的时候需要注意: (1)图片的命名要连续,如图: (2)将这些图片在NGUI中打包成Altas图集的时候图片应该在同一个Altas中: 这里以播放特效为例,满足条件时播 ...