题目大意

要求你对一个合法的括号序列进行染色,并且需要满足以下条件

1、要么不染色,要么染红色或者蓝色

2、对于任何一对括号,他们当中有且仅有一个被染色

3、相邻的括号不能染相同的颜色

题解

用区间dp[i][j][cl][cr]表示区间[i,j]被染色之后(第i个括号被染成cl色,第j个括号被染成cr色)的合法方案数

分为匹配和不匹配两种情况来处理,需要用到乘法原理,用记忆化比较好写~~~具体请看代码

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 705
#define MOD 1000000007
typedef long long LL;
LL dp[MAXN][MAXN][3][3];
int match[MAXN],q[MAXN];
char s[MAXN];
bool check(int i,int j)
{
if(i==0||j==0||i!=j) return true;
return false;
}
LL dfs(int l,int r,int cl,int cr)
{
LL &ret=dp[l][r][cl] [cr];
if(ret!=-1) return ret;
ret=0;
if(match[l]==r)
{
if((cl==0)^(cr==0))
{
if(l+1==r) return ret=1;
for(int i=0; i<3; i++)
for(int j=0; j<3; j++)
if(check(cl,i)&&check(j,cr))
ret=(ret+dfs(l+1,r-1,i,j))%MOD;
}
}
else
{
for(int i=0; i<3; i++)
for(int j=0; j<3; j++)
if(check(i,j))
ret=(ret+dfs(l,match[l],cl,i)*dfs(match[l]+1,r,j,cr))%MOD;
}
return ret;
}
int main()
{
while(~scanf("%s",s+1))
{
int n=strlen(s+1),t=1;
for(int i=1; i<=n; i++)
if(s[i]=='(') q[t++]=i;
else
match[q[--t]]=i;
LL ans=0;
memset(dp,-1,sizeof(dp));
for(int i=0; i<3; i++)
for(int j=0; j<3; j++)
ans=(ans+dfs(1,n,i,j))%MOD;
printf("%I64d\n",ans);
}
return 0;
}

Codeforces149D - Coloring Brackets(区间DP)的更多相关文章

  1. Codeforces Round #106 (Div. 2) D. Coloring Brackets —— 区间DP

    题目链接:https://vjudge.net/problem/CodeForces-149D D. Coloring Brackets time limit per test 2 seconds m ...

  2. CF149D. Coloring Brackets[区间DP !]

    题意:给括号匹配涂色,红色蓝色或不涂,要求见原题,求方案数 区间DP 用栈先处理匹配 f[i][j][0/1/2][0/1/2]表示i到ji涂色和j涂色的方案数 l和r匹配的话,转移到(l+1,r-1 ...

  3. codeforces 149D Coloring Brackets (区间DP + dfs)

    题目链接: codeforces 149D Coloring Brackets 题目描述: 给一个合法的括号串,然后问这串括号有多少种涂色方案,当然啦!涂色是有限制的. 1,每个括号只有三种选择:涂红 ...

  4. Codeforces Round #106 (Div. 2) D. Coloring Brackets 区间dp

    题目链接: http://codeforces.com/problemset/problem/149/D D. Coloring Brackets time limit per test2 secon ...

  5. CF 149D Coloring Brackets 区间dp ****

    给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色,上蓝色 2.每对括号必须只能给其中的一个上色 3.相邻的两个不能上同色,可以都不上色 求0-len-1这一区间内 ...

  6. codeforce 149D Coloring Brackets 区间DP

    题目链接:http://codeforces.com/problemset/problem/149/D 继续区间DP啊.... 思路: 定义dp[l][r][c1][c2]表示对于区间(l,r)来说, ...

  7. CodeForces 149D Coloring Brackets 区间DP

    http://codeforces.com/problemset/problem/149/D 题意: 给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色,上蓝色 2 ...

  8. Codeforces 508E Arthur and Brackets 区间dp

    Arthur and Brackets 区间dp, dp[ i ][ j ]表示第 i 个括号到第 j 个括号之间的所有括号能不能形成一个合法方案. 然后dp就完事了. #include<bit ...

  9. POJ 2995 Brackets 区间DP

    POJ 2995 Brackets 区间DP 题意 大意:给你一个字符串,询问这个字符串满足要求的有多少,()和[]都是一个匹配.需要注意的是这里的匹配规则. 解题思路 区间DP,开始自己没想到是区间 ...

随机推荐

  1. Servlet的getContextPath(), getServletPath(), getRequestURI(), getRealPath("/")

    假定web application 名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下结果: ...

  2. C# - 非中断(正常)模式下的调试

    一般我们用Console.WriteLine()函数,将文本输出到控制台上来跟踪代码进行到了什么位置,局限性很大,适用范围窄. 1. 输出调试信息 命名空间 System.Dignostics Deb ...

  3. maven编译的时候排除junit测试类

    maven项目中使用junit进行单元测试,在进行编译的时候,可以通过2种方式排除test测试类的编译. 有2种方式 : 使用命令的时候带上参数 mvn install -Dmaven.test.sk ...

  4. sjtu1364 countcountcount

    Description 我有一个元素个数为\(n\)的整数数组\(a\)和\(Q\)个问题,每个问题有\(x,y\)两个参数,我要数有多少个整数\(K\)满足\(K\)在\(a[x]-a[y]\)中出 ...

  5. python登录豆瓣,发帖

    学习了urllib.urllib2及cookielib常用方法的使用登录豆瓣,由于有验证码,采取的办法是将验证码图片下载到同目录下,查看图片后输入验证码即可登录.发帖帖子内容写死在代码中了 [Pyth ...

  6. 最近在折腾VPS(持续完善)

    买的某国内vps. 本机环境 Win7-x64 使用官方英文版的putty,用于远程登录linux主机.WinSCP图形界面管理文件. VPS CentOS 6.2 安装 安全狗(safedog.cn ...

  7. [状压dp]经典TSP

    0出发 每个顶点经过一次 回到0 最小花费. O($n^2 \times 2^n$) 记忆化搜索: // s: 已经访问过的节点状态 v: 出发位置 int dfs(int s, int v) { ) ...

  8. comm命令——

    comm命令 :对已经有序的文件进行比较——第一列只在文件1中出现的文件,第二列只在文件2中出现的文件,第三列在文件1和文件2中同事出现的文件 请注意前提条件:             comm对文件 ...

  9. 一个CLI的 的例子

    1)这是CLI 调用HTTPOST例子 #using <System.dll> using namespace System;using namespace System::Net;usi ...

  10. Django中的Model继承

    Django 中的 model 继承和 Python 中的类继承非常相似,只不过你要选择具体的实现方式:让父 model 拥有独立的数据库:还是让父 model 只包含基本的公共信息,而这些信息只能由 ...