Go Slices: usage and internals
Introduction
Go's slice type provides a convenient and efficient means of working with sequences of typed data. Slices are analogous to arrays in other languages, but have some unusual properties. This article will look at what slices are and how they are used.
Arrays
The slice type is an abstraction built on top of Go's array type, and so to understand slices we must first understand arrays.
An array type definition specifies a length and an element type. For example, the type[4]int represents an array of four integers. An array's size is fixed; its length is part of its type ([4]int and [5]int are distinct, incompatible types). Arrays can be indexed in the usual way, so the expression s[n] accesses the nth element, starting from zero.
var a []int
a[] =
i := a[]
// i == 1
Arrays do not need to be initialized explicitly; the zero value of an array is a ready-to-use array whose elements are themselves zeroed:
// a[2] == 0, the zero value of the int type
The in-memory representation of [4]int is just four integer values laid out sequentially:

Go's arrays are values. An array variable denotes the entire array; it is not a pointer to the first array element (as would be the case in C). This means that when you assign or pass around an array value you will make a copy of its contents. (To avoid the copy you could pass a pointer to the array, but then that's a pointer to an array, not an array.) One way to think about arrays is as a sort of struct but with indexed rather than named fields: a fixed-size composite value.
没有什么就是感到奇怪怎么传递数组指针
package main
import "fmt"
func testArray(a []int) {
a[] =
a[] =
}
func testArrayPoint(a *[]int){
(*a)[] =
(*a)[] =
}
func main() {
var a []int = []int{, , , }//声明定义数组
testArray(a)
fmt.Println(a)
testArrayPoint(&a)
fmt.Println(a)
}
An array literal can be specified like so:
b := []string{"Penn", "Teller"}
Or, you can have the compiler count the array elements for you:
b := [...]string{"Penn", "Teller"}
In both cases, the type of b is [2]string.
Slices
Arrays have their place, but they're a bit inflexible, so you don't see them too often in Go code. Slices, though, are everywhere. They build on arrays to provide great power and convenience.
The type specification for a slice is []T, where T is the type of the elements of the slice. Unlike an array type, a slice type has no specified length.
A slice literal is declared just like an array literal, except you leave out the element count:
letters := []string{"a", "b", "c", "d"}
A slice can be created with the built-in function called make, which has the signature,
func make([]T, len, cap) []T
where T stands for the element type of the slice to be created. The make function takes a type, a length, and an optional capacity. When called, make allocates an array and returns a slice that refers to that array.
var s []byte
s = make([]byte, , )
// s == []byte{0, 0, 0, 0, 0}
When the capacity argument is omitted, it defaults to the specified length. Here's a more succinct version of the same code:
s := make([]byte, )
The length and capacity of a slice can be inspected using the built-in len and cap functions.
len(s) ==
cap(s) ==
The next two sections discuss the relationship between length and capacity.
The zero value of a slice is nil. The len and cap functions will both return 0 for a nil slice.
A slice can also be formed by "slicing" an existing slice or array. Slicing is done by specifying a half-open range with two indices separated by a colon. For example, the expression b[1:4] creates a slice including elements 1 through 3 of b (the indices of the resulting slice will be 0 through 2).
b := []byte{'g', 'o', 'l', 'a', 'n', 'g'}
// b[1:4] == []byte{'o', 'l', 'a'}, sharing the same storage as b
The start and end indices of a slice expression are optional; they default to zero and the slice's length respectively:
// b[:2] == []byte{'g', 'o'}
// b[2:] == []byte{'l', 'a', 'n', 'g'}
// b[:] == b
This is also the syntax to create a slice given an array:
x := []string{"Лайка", "Белка", "Стрелка"}
s := x[:] // a slice referencing the storage of x
Slice internals
A slice is a descriptor of an array segment. It consists of a pointer to the array, the length of the segment, and its capacity (the maximum length of the segment).

Our variable s, created earlier by make([]byte, 5), is structured like this:

The length is the number of elements referred to by the slice. The capacity is the number of elements in the underlying array (beginning at the element referred to by the slice pointer). The distinction between length and capacity will be made clear as we walk through the next few examples.
As we slice s, observe the changes in the slice data structure and their relation to the underlying array:
s = s[:]

Slicing does not copy the slice's data. It creates a new slice value that points to the original array. This makes slice operations as efficient as manipulating array indices. Therefore, modifying the elements (not the slice itself) of a re-slice modifies the elements of the original slice:
d := []byte{'r', 'o', 'a', 'd'}
e := d[:]
// e == []byte{'a', 'd'}
e[] = 'm'
// e == []byte{'a', 'm'}
// d == []byte{'r', 'o', 'a', 'm'}
Earlier we sliced s to a length shorter than its capacity. We can grow s to its capacity by slicing it again:
s = s[:cap(s)]

A slice cannot be grown beyond its capacity. Attempting to do so will cause a runtime panic, just as when indexing outside the bounds of a slice or array. Similarly, slices cannot be re-sliced below zero to access earlier elements in the array.
Growing slices (the copy and append functions)
To increase the capacity of a slice one must create a new, larger slice and copy the contents of the original slice into it. This technique is how dynamic array implementations from other languages work behind the scenes. The next example doubles the capacity of s by making a new slice, t, copying the contents of s into t, and then assigning the slice value t to s:
t := make([]byte, len(s), (cap(s)+1)*2) // +1 in case cap(s) == 0
for i := range s {
t[i] = s[i]
}
s = t
The looping piece of this common operation is made easier by the built-in copy function. As the name suggests, copy copies data from a source slice to a destination slice. It returns the number of elements copied.
func copy(dst, src []T) int
The copy function supports copying between slices of different lengths (it will copy only up to the smaller number of elements). In addition, copy can handle source and destination slices that share the same underlying array, handling overlapping slices correctly.
Using copy, we can simplify the code snippet above:
t := make([]byte, len(s), (cap(s)+1)*2)
copy(t, s)
s = t
A common operation is to append data to the end of a slice. This function appends byte elements to a slice of bytes, growing the slice if necessary, and returns the updated slice value:
func AppendByte(slice []byte, data ...byte) []byte {
m := len(slice)
n := m + len(data)
if n > cap(slice) { // if necessary, reallocate
// allocate double what's needed, for future growth.
newSlice := make([]byte, (n+1)*2)
copy(newSlice, slice)
slice = newSlice
}
slice = slice[0:n]
copy(slice[m:n], data)
return slice
}
One could use AppendByte like this:
p := []byte{2, 3, 5}
p = AppendByte(p, 7, 11, 13)
// p == []byte{2, 3, 5, 7, 11, 13}
Functions like AppendByte are useful because they offer complete control over the way the slice is grown. Depending on the characteristics of the program, it may be desirable to allocate in smaller or larger chunks, or to put a ceiling on the size of a reallocation.
But most programs don't need complete control, so Go provides a built-in append function that's good for most purposes; it has the signature
func append(s []T, x ...T) []T
The append function appends the elements x to the end of the slice s, and grows the slice if a greater capacity is needed.
a := make([]int, 1)
// a == []int{0}
a = append(a, 1, 2, 3)
// a == []int{0, 1, 2, 3}
To append one slice to another, use ... to expand the second argument to a list of arguments.
a := []string{"John", "Paul"}
b := []string{"George", "Ringo", "Pete"}
a = append(a, b...) // equivalent to "append(a, b[0], b[1], b[2])"
// a == []string{"John", "Paul", "George", "Ringo", "Pete"}
Since the zero value of a slice (nil) acts like a zero-length slice, you can declare a slice variable and then append to it in a loop:
// Filter returns a new slice holding only
// the elements of s that satisfy f()
func Filter(s []int, fn func(int) bool) []int {
var p []int // == nil
for _, v := range s {
if fn(v) {
p = append(p, v)
}
}
return p
}
A possible "gotcha"
As mentioned earlier, re-slicing a slice doesn't make a copy of the underlying array. The full array will be kept in memory until it is no longer referenced. Occasionally this can cause the program to hold all the data in memory when only a small piece of it is needed.
For example, this FindDigits function loads a file into memory and searches it for the first group of consecutive numeric digits, returning them as a new slice.
var digitRegexp = regexp.MustCompile("[0-9]+")
func FindDigits(filename string) []byte {
b, _ := ioutil.ReadFile(filename)
return digitRegexp.Find(b)
}
This code behaves as advertised, but the returned []byte points into an array containing the entire file. Since the slice references the original array, as long as the slice is kept around the garbage collector can't release the array; the few useful bytes of the file keep the entire contents in memory.
To fix this problem one can copy the interesting data to a new slice before returning it:
func CopyDigits(filename string) []byte {
b, _ := ioutil.ReadFile(filename)
b = digitRegexp.Find(b)
c := make([]byte, len(b))
copy(c, b)
return c
}
A more concise version of this function could be constructed by using append. This is left as an exercise for the reader.
Further Reading
Effective Go contains an in-depth treatment of slices and arrays, and the Go language specification defines slices and their associated helper functions.
By Andrew Gerrand
Go Slices: usage and internals的更多相关文章
- 17 Go Slices: usage and internals GO语言切片: 使用和内部
Go Slices: usage and internals GO语言切片: 使用和内部 5 January 2011 Introduction Go's slice type provides a ...
- golang学习之旅:官方文档汇总
The Go Programming Language Specification:http://localhost:8080/ref/spec学习Constants.Variables.Types. ...
- 转:微博"收藏/赞/转发"技术资料汇总
书籍 HTTP权威指南 <- @Fenng Introduction to Information Retrieval <- @陈利人 Lua 源码欣赏 <- @简悦云风 The A ...
- 33 Introducing the Go Race Detector
Introducing the Go Race Detector 26 June 2013 Introduction Race conditions are among the most insidi ...
- 31 Godoc: documenting Go code 编写良好的文档关于godoc
Godoc: documenting Go code 编写良好的文档关于godoc 31 March 2011 The Go project takes documentation seriousl ...
- 32 Profiling Go Programs 分析go语言项目
Profiling Go Programs 分析go语言项目 24 June 2011 At Scala Days 2011, Robert Hundt presented a paper titl ...
- 30 C? Go? Cgo!
C? Go? Cgo! 17 March 2011 Introduction Cgo lets Go packages call C code. Given a Go source file writ ...
- 25 The Go image/draw package go图片/描绘包:图片/描绘包的基本原理
The Go image/draw package go图片/描绘包:图片/描绘包的基本原理 29 September 2011 Introduction Package image/draw de ...
- 24 The Go image package go图片包:图片包的基本原理
The Go image package go图片包:图片包的基本原理 21 September 2011 Introduction The image and image/color packag ...
随机推荐
- CODEVS 2994 超级弹珠
题目描述 Description 奶牛们最近从著名的奶牛玩具制造商Tycow那里,买了一套仿真版彩蛋游戏设备.Bessie把她们玩游戏的草坪划成了N*N单位的矩阵,同时列出了她的K个对手在草地上的位置 ...
- 对于数组使用sizeof(a)和使用sizeof(a[0])
#include "stdafx.h" #include <iostream> using namespace std; int main() { ]={}; cout ...
- 为你下一个项目准备的 50 个 Bootstrap 插件
Bootstrap是快速开发Web应用程序的前端工具包.它是一个CSS和HTML的集合,它使用了最新的浏览器技术,给你的Web开发提供了时尚的版式,表单,buttons,表格,网格系统等等. 本文向你 ...
- MySQL注入中load_file()函数的应用
常用的一些Load_File()函数攻击手法:
- uva 12654
dp,用优先队列存,上个节点节点覆盖下来的长度: 不过还不是很明白: #include<cstdio> #include<queue> #include<algorith ...
- Jquery.Validate验证CheckBoxList,RadioButtonList,DropDownList是否选中
http://blog.csdn.net/fox123871/article/details/8108030 <script type="text/javascript"&g ...
- 总结: Struts2 + Spring 的线程安全问题
1. 首先Struts2 本身是安全的 其原理大概是:Strtus2会获取到用户的http请求,然后负责给每个请求实例化一个Action 对象,但是大家注意,这里的action对象和Struts1里面 ...
- comm命令——
comm命令 :对已经有序的文件进行比较——第一列只在文件1中出现的文件,第二列只在文件2中出现的文件,第三列在文件1和文件2中同事出现的文件 请注意前提条件: comm对文件 ...
- SPRING IN ACTION 第4版笔记-第五章BUILDING SPRING WEB APPLICATIONS-004-以query parameters的形式给action传参数(@RequestParam、defaultValue)
一. 1.Spring MVC provides several ways that a client can pass data into a controller’s handler method ...
- Form Personalization应用总结
1 Form Personalization 简介 Oracle EBS 11.5.10增加了Form Personalization功能,该功能不仅是技术功能的一次增强,也是对业务功能的扩展,提高了 ...