URAL 2032 - Conspiracy Theory and Rebranding【本源勾股数组】
【题意】
给出三角形的三个边长,均是10^7以内的整数,问三角形的三个角的坐标是否能均是整数,输出其中任意一个解。
【题解】
一开始想的是枚举一条边的横坐标,然后通过勾股定理以及算角度求出其他点的坐标,再判断是否符合条件。
亲测TLE
直到知道了本源勾股数组的构造方法。。。
每个本源勾股数组(a,b,c)满足a*a+b*b=c*c,其中a为奇数,b为偶数。。
枚举s,t(1<=t<s,且它们是没有公因数的奇数)
a=st b=(s*s-t*t)/2 c=(s*s+t*t)/2
因为最大数c=(s*s+t*t)/2 所以最多枚举到sqrt(2*c)即可。
假设三角形的三个点分别为p,q和r,
我们先固定一个点为p(0,0),另外一个点q与它的距离是x,还有一个点r与它的距离是y。那么q的距离与r的距离一定是z
我们枚举勾股数组,如果勾股数组(a1,b1,c1)的c1,也就是最大的那个数,等于x,那么x的坐标为(a1,b1)【当然也可以是(a1,-b1),(-a1,b1),(-a1,-b1),均需要枚举,下同】
然后枚举c等于y的勾股数组,(a2,b2,c2),那么r点坐标为(a2,b2) 【可以事先把这些坐标预处理出来,放入vector中】
接下来判断两坐标是否相距为z即可。
注意通过这种方法求出来的勾股数组的a是奇数,也就是说它们的倍数 (i*a,i*b,i*c),i是一个正整数,并不会被求出来,我们要求的是i*c==x,那么只要满足x mod c=0我们就可以把勾股数组乘以x/c,加入备选选项中。
注意(0,x) (0,-x) (x,0) (-x,0)以及(0,y) (0,-y) (y,0) (-y,0) 不会在枚举本源勾股数组中出现,所以需要自己手动判断。
#include<bits/stdc++.h>
#define eps 1e-9
#define FOR(i,j,k) for(int i=j;i<=k;i++)
#define MAXN 1005
#define MAXM 40005
#define INF 0x3fffffff
#define PB push_back
#define MP make_pair
#define X first
#define Y second
#define lc (k<<1)
#define rc ((k<<1)1)
using namespace std;
typedef long long LL;
LL i,j,k,n,m,x,y,T,ans,big,cas,num,len;
bool flag;
LL z;
LL mx,sum,a,b,c;
vector <pair<LL,LL> > xx,yy; LL gcd(LL x, LL y)
{
return y ? gcd(y, x % y) : x;
} int main()
{
scanf("%I64d%I64d%I64d",&x,&y,&z);
if (x>y) swap(x,y);
if (y>z) swap(y,z);
if (x>y) swap(x,y);
mx=(LL)(sqrt(*z)+eps); for (i=;i<=mx;i+=)//枚举本源勾股数组
{
for (j=i+;j<=mx;j+=)
{
if (gcd(i,j)>) continue;
a=i*j;
b=(j*j-i*i)/;
c=(j*j+i*i)/;
if (x%c==)
{
xx.PB(MP(a*x/c,b*x/c));
xx.PB(MP(a*x/c,-b*x/c));
xx.PB(MP(-a*x/c,b*x/c));
xx.PB(MP(-a*x/c,-b*x/c));
xx.PB(MP(b*x/c,a*x/c));
xx.PB(MP(b*x/c,-a*x/c));
xx.PB(MP(-b*x/c,a*x/c));
xx.PB(MP(-b*x/c,-a*x/c));
}
if (y%c==)
{
yy.PB(MP(a*y/c,b*y/c));
yy.PB(MP(a*y/c,-b*y/c));
yy.PB(MP(-a*y/c,b*y/c));
yy.PB(MP(-a*y/c,-b*y/c));
yy.PB(MP(b*y/c,a*y/c));
yy.PB(MP(b*y/c,-a*y/c));
yy.PB(MP(-b*y/c,a*y/c));
yy.PB(MP(-b*y/c,-a*y/c));
}
}
}
xx.PB(MP(,x));xx.PB(MP(x,));xx.PB(MP(,-x));xx.PB(MP(-x,));
yy.PB(MP(,y));yy.PB(MP(y,));yy.PB(MP(,-y));yy.PB(MP(-y,)); for (i=;i<xx.size();i++)
{
for (j=;j<yy.size();j++)
{
if ((xx[i].X-yy[j].X)*(xx[i].X-yy[j].X)+(xx[i].Y-yy[j].Y)*(xx[i].Y-yy[j].Y)==z*z)
{
printf("0 0\n%I64d %I64d\n%I64d %I64d\n",xx[i].X,xx[i].Y,yy[j].X,yy[j].Y);
return ;
}
}
}
printf("-1\n");
return ;
}
URAL 2032 - Conspiracy Theory and Rebranding【本源勾股数组】的更多相关文章
- ural 2032 Conspiracy Theory and Rebranding (数学水题)
ural 2032 Conspiracy Theory and Rebranding 链接:http://acm.timus.ru/problem.aspx?space=1&num=2032 ...
- 勾股数组及其应用uva106
勾股数组 设三元组(a,b,c)满足a^2 + b^2 = c^2的勾股数组,那么是否存在无穷多个勾股数组呢, 答案是肯定的,将三元组乘以d,可以得到新的三元组(da,db,dc) 即(da)^2 + ...
- Fermat vs. Pythagoras POJ - 1305 (数论之勾股数组(毕达哥拉斯三元组))
题意:(a, b, c)为a2+b2=c2的一个解,那么求gcd(a, b, c)=1的组数,并且a<b<c<=n,和不为解中所含数字的个数,比如在n等于10时,为1, 2, 7,9 ...
- 毕达哥拉斯三元组(勾股数组)poj1305
本原毕达哥拉斯三元组是由三个正整数x,y,z组成,且gcd(x,y,z)=1,x*x+y*y=z*z 对于所有的本原毕达哥拉斯三元组(a,b,c) (a*a+b*b=c*c,a与b必定奇偶互异,且c为 ...
- bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2027 Solved: 853[Submit][Stat ...
- hdu 3939(勾股+容斥)
题意: 给定一个整数L(L<=1e12),计算(x,y,z)组的个数.其中x<y<z,x^2+y^2=z^2,gcd(x,y)==1,gcd(x,z)==1,gcd(y,z)==1. ...
- UVa 106 - Fermat vs Pythagoras(数论题目)
题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...
- 【bzoj1041】圆上的整点
题意 给定一个圆\(x^2+y^2=z^2\),求圆周上有多少个点的坐标是整数. \(r\leq 2*10^9\) 分析 这道题目关键要知道一些勾股数的性质,剩下的就很好处理了. 勾股数的性质 参考: ...
- ACM 数论小结 2014-08-27 20:36 43人阅读 评论(0) 收藏
断断续续的学习数论已经有一段时间了,学得也很杂,现在进行一些简单的回顾和总结. 学过的东西不能忘啊... 1.本原勾股数: 概念:一个三元组(a,b,c),其中a,b,c没有公因数而且满足:a^2+b ...
随机推荐
- 既然HTTP1.1协议里每个连接默认都是持久连接,那么为何当今所有报文都在使用Connetion:Keep-Alive
说白了,如果你发起时有,那么服务器支持,回应时也会有,不支持,也就没有了.所以一般客户端都会默认带着发,服务端返回不返回就是服务端的事了. 1. 支不支持长连接,关键在于服务端是否支持. 如果服务端不 ...
- MVC3的一个意外的异常 String was not recognized as a valid Boolean. @using (Html.BeginForm())
客户的网站放在一个虚拟空间,之间都没有修改过程序.可是网站的后台登录页面报错 String was not recognized as a valid Boolean. ,错误指向@using (H ...
- C读写配置文件
在项目开发中,经常需要读取应用配置文件的初始化参数,用于应用在启动前进行一些初始化配置.比如:Eclipse,参数项包含主题.字体大小.颜色.Jdk安装位置.自动提示等.Eclispe配置的文件格式是 ...
- error proc
/*************************************************************************\ * Copyright (C) Michael ...
- Matlab读取cifar10 train_quick.sh输出txt中信息
感谢 网友 Vagrant的提醒.之前 一直就看个最后的accuracy.这个应该并不靠谱.最好把说有的信息都看一下.而一个一个看.根本记不住.只能把数据读取在图片中显示一下,才比较直观. 本文就是读 ...
- [topcoder]UnsealTheSafe
http://community.topcoder.com/stat?c=problem_statement&pm=4471&rd=10711 这题果然是道简单题,图+DP.拿道题便觉 ...
- java中的日期格式
时间日期标识符: yyyy:年 MM:月 dd:日 hh:~12小时制(-) HH:24小时制(-) mm:分 ss:秒 S:毫秒 E:星期几 D:一年中的第几天 F:一月中的第几个星期(会把这个月总 ...
- truncate 空间不释放问题
SQL> set linesize 200 SQL> select segment_name, sum(bytes / 1024 / 1024/1024) from dba_segment ...
- 【转】怎么在Foxmail回复/转发时使用签名?
原文网址:http://kf.qq.com/faq/120322fu63YV130422yABZRZ.html Foxmail回复/转发时使用签名,可通过在模版中设置签名.如下版本操作方法: 一.fo ...
- 字符串(后缀自动机):Ahoi2013 差异
Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Output 54 HINT 2<=N< ...