题目描述:

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

输入格式:

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

输出格式:

共n行,每行一个整数表示满足要求的数对(x,y)的个数

样例输入:

2

2 5 1 5 1

1 5 1 5 2

样例输出:

14

3

数据范围:

10%的数据满足:1≤n≤5,1≤a≤b≤100,1≤c≤d≤100

30%的数据满足:1≤n≤10

100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000

  令F(n)表示gcd为k的倍数的数对个数,f(d)表示gcd为k个对数,显然符合第二种反演的形式。

  然后再加上一个计数的小优化就可以AC了。

 #include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn=;
int prime[maxn],cnt;
int mu[maxn],sum[maxn];
bool check[maxn]; void Prepare(){
mu[]=;
for(int i=;i<=;i++){
if(!check[i]){
prime[++cnt]=i;
mu[i]=-;
}
for(int j=;j<=cnt;j++){
if(prime[j]*i>)break;
check[prime[j]*i]=true;
if(i%prime[j]==){
mu[prime[j]*i]=;
break;
}
mu[prime[j]*i]=mu[i]*-;
}
}
for(int i=;i<=;i++)
sum[i]=sum[i-]+mu[i];
} int T,k;
int a,b,c,d;
int C(int n,int m){
n/=k;m/=k;
int ret=,p;
if(n>m)swap(n,m);
for(int i=;i<=n;i=p+){
p=min(n/(n/i),m/(m/i));
ret+=(sum[p]-sum[i-])*(n/i)*(m/i);
}
return ret;
} int main(){
freopen("b.in","r",stdin);
freopen("b.out","w",stdout);
Prepare();
scanf("%d",&T);
while(T--){
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
printf("%d\n",C(b,d)-C(b,c-)-C(a-,d)+C(a-,c-));
}
return ;
}

数学(莫比乌斯反演):HAOI 2011 问题B的更多相关文章

  1. HDU 1695 GCD (莫比乌斯反演)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  2. SPOJ PGCD 4491. Primes in GCD Table && BZOJ 2820 YY的GCD (莫比乌斯反演)

    4491. Primes in GCD Table Problem code: PGCD Johnny has created a table which encodes the results of ...

  3. SPOJ 7001. Visible Lattice Points (莫比乌斯反演)

    7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...

  4. BZOJ 2301: [HAOI2011]Problem b (莫比乌斯反演)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 436  Solved: 187[Submit][S ...

  5. [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明)

    [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明) 题面 T组询问,每次给出a,b,c,d,k,求\(\sum _{i=a}^b\sum _{j=c}^d[ ...

  6. BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4493  Solved: 2695[Submit][Statu ...

  7. 数学:莫比乌斯反演-GCD计数

    Luogu3455:莫比乌斯反演进行GCD计数 莫比乌斯反演就是用来解决这一类问题的,通常f函数是要求的那个,F函数是显然的 这样利用F的结果就可以推出来f的结果 在计算结果的时候整除分快儿一下就可以 ...

  8. luogu 4844 LJJ爱数数 (莫比乌斯反演+数学推导)

    题目大意:求满足gcd(a,b,c)==1,1/a+1/b=1/c,a,b,c<=n的{a,b,c}有序三元组个数 因为题目里有LJJ我才做的这道题 出题人官方题解https://www.cnb ...

  9. 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)

    先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...

  10. 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2371  Solved: 1143[Submit][Sta ...

随机推荐

  1. 网站分析统计JS源码分享

    之前公司做了一个分析云平台,用来跟踪收集海量的用户行为的相关数据,供运营人员实时监控网站访问量,统计PV,UV,独立IP,访问时段,访问时长,热点追踪等多类信息,我用JS写了一个小插件,只需要再页面加 ...

  2. 读取xml字符串

    string strXml = @"<MessageData><pm_id>10</pm_id><pm_title>这是公司或者产品的名称&l ...

  3. (转)[开发笔记]-js判断用户的浏览设备是移动设备还是PC

    <script type="text/javascript"> function browserRedirect() { var sUserAgent = naviga ...

  4. HashMap HashTable HashSet

    原文转载自 http://blog.csdn.net/wl_ldy/article/details/5941770 HashMap是新框架中用来代替HashTable的类 也就是说建议使用HashMa ...

  5. xml中报错,验证是否是xml报错

    1.xml中写入sql有时报错,例如有大于号小于号,要用<![CDATA[                  ]]>扩起来 2.验证xml有错的方式,以浏览器方式打开,如果正常打开,无错. ...

  6. acl操作记录

    官方文档内容: 1.CREATE_ACL Procedure创建ACL Note: This procedure is deprecated in Oracle Database 12c. While ...

  7. CoreBluetooth

    Core Bluetooth的基本常识 每个蓝牙4.0设备都是通过服务(Service)和特征(Characteristic)来展示自己的 一个设备必然包含一个或多个服务,每个服务下面又包含若干个特征 ...

  8. 第五篇、 WebSphere8.5的安装

    一.前言 WebSphere Application  Server 是IBM企业级应用服务器,与WAS6,WAS7相比较而言 WAS8发生了很大的改变,其安装介质和以前截然不同,该篇章中对于不同的安 ...

  9. 知识库系统confluence5.8.10 安装与破解

    一直对知识库体系很在意,设想这样的场景,公司历年的研发资料只要一个搜索,相关的知识点就全部摆在面前,任君取用,想一想就无限迷人,只是从10年开始,由于种种原因,终究没能好好研究一下.最近机缘巧合,可以 ...

  10. Mysql 目录恢复注意事项

    SET @mycnt=0; SELECT @mycnt := @mycnt +1 as mycnt, a.*, b.* FROM a, b; 表中第一列即为mycnt,从1开始计数. set @num ...