数学(莫比乌斯反演):HAOI 2011 问题B
题目描述:
对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。
输入格式:
第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k
输出格式:
共n行,每行一个整数表示满足要求的数对(x,y)的个数
样例输入:
2
2 5 1 5 1
1 5 1 5 2
样例输出:
14
3
数据范围:
10%的数据满足:1≤n≤5,1≤a≤b≤100,1≤c≤d≤100
30%的数据满足:1≤n≤10
100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000
令F(n)表示gcd为k的倍数的数对个数,f(d)表示gcd为k个对数,显然符合第二种反演的形式。
然后再加上一个计数的小优化就可以AC了。
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn=;
int prime[maxn],cnt;
int mu[maxn],sum[maxn];
bool check[maxn]; void Prepare(){
mu[]=;
for(int i=;i<=;i++){
if(!check[i]){
prime[++cnt]=i;
mu[i]=-;
}
for(int j=;j<=cnt;j++){
if(prime[j]*i>)break;
check[prime[j]*i]=true;
if(i%prime[j]==){
mu[prime[j]*i]=;
break;
}
mu[prime[j]*i]=mu[i]*-;
}
}
for(int i=;i<=;i++)
sum[i]=sum[i-]+mu[i];
} int T,k;
int a,b,c,d;
int C(int n,int m){
n/=k;m/=k;
int ret=,p;
if(n>m)swap(n,m);
for(int i=;i<=n;i=p+){
p=min(n/(n/i),m/(m/i));
ret+=(sum[p]-sum[i-])*(n/i)*(m/i);
}
return ret;
} int main(){
freopen("b.in","r",stdin);
freopen("b.out","w",stdout);
Prepare();
scanf("%d",&T);
while(T--){
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
printf("%d\n",C(b,d)-C(b,c-)-C(a-,d)+C(a-,c-));
}
return ;
}
数学(莫比乌斯反演):HAOI 2011 问题B的更多相关文章
- HDU 1695 GCD (莫比乌斯反演)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- SPOJ PGCD 4491. Primes in GCD Table && BZOJ 2820 YY的GCD (莫比乌斯反演)
4491. Primes in GCD Table Problem code: PGCD Johnny has created a table which encodes the results of ...
- SPOJ 7001. Visible Lattice Points (莫比乌斯反演)
7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...
- BZOJ 2301: [HAOI2011]Problem b (莫比乌斯反演)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 436 Solved: 187[Submit][S ...
- [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明)
[BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明) 题面 T组询问,每次给出a,b,c,d,k,求\(\sum _{i=a}^b\sum _{j=c}^d[ ...
- BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 4493 Solved: 2695[Submit][Statu ...
- 数学:莫比乌斯反演-GCD计数
Luogu3455:莫比乌斯反演进行GCD计数 莫比乌斯反演就是用来解决这一类问题的,通常f函数是要求的那个,F函数是显然的 这样利用F的结果就可以推出来f的结果 在计算结果的时候整除分快儿一下就可以 ...
- luogu 4844 LJJ爱数数 (莫比乌斯反演+数学推导)
题目大意:求满足gcd(a,b,c)==1,1/a+1/b=1/c,a,b,c<=n的{a,b,c}有序三元组个数 因为题目里有LJJ我才做的这道题 出题人官方题解https://www.cnb ...
- 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)
先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...
- 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2371 Solved: 1143[Submit][Sta ...
随机推荐
- 第七章----pwm蜂鸣器
Linux代码的重用: 在头文件中加载即可使用到原来所有的功能,还有动态方式就是一个驱动使用另一个驱动的资源. 对于像蜂鸣器这样的实验,它的内部文件有很多,所有要有很多的源代码以用于妥善管理. 有多个 ...
- 一款js、css压缩工具yuicompressor
//压缩JS java -jar yuicompressor-.jar --type js --charset utf- -v src.js > packed.js //压缩CSS java - ...
- maven提示错误的解决办法
import或者new一个的maven project的时候,提示如下错误 Description Resource Path Location TypeCannot read ...
- JS打开窗口问题
语法 window.open(URL,name,features,replace) URL:一个可选的字符串,声明了要在新窗口中显示的文档的 URL.如果省略了这个参数,或者它的值是空字符串,那么新窗 ...
- Android Animation学习 实现 IOS 滤镜退出动画
IOS的用户体验做的很好,其中一点很重要的地方就是动画效果. 最近在学习Android的Animation,简单实现了一个IOS相机滤镜退出的动画: 布局文件:activity_animation_d ...
- $(document).ready(function(){});不执行
这里可能会有以下几种原因,请你挨个排查: 1.jqury的文件一定要引入1.js文件的引用路径不正确,特别是使用了命名空间,容易造成路径错误,使用绝对路径看是否成功 2.某一些函数使用错误,举个例子, ...
- IOS 生成设备唯一标识
前言 iOS设备5.0以上放弃使用[[UIDevice currentDevice] uniqueIdentifier]来获得设备唯一ID iOS设备私有方法禁止用户获取和使用IMEI 需求 需要一个 ...
- Moving a Subversion Repository to Another Server
Moving a subversion repository from one server to another, while still preserving all your version h ...
- SGU 114.Telecasting station
题意: 百慕大的每一座城市都坐落在一维直线上.这个国家的政府决定建造一个新的广播电视台.经过了许多次试验后,百慕大的科学家们提出了一个结论,在每座城市的不满意度等于这座城市的市民数与这座城市与广播电视 ...
- SGU 153.Playing with matches
题意: 一个取火柴游戏,可以取的数在一个集合S内,S必包含1,且不超过9个数,每个数都不大于9.最后取完者失败. 求n(n<10^9)根火柴时先取的胜利还是后取的胜利. Solution: 典型 ...