[NOI2009] 管道取珠

输入文件:ballb.in   输出文件:ballb.out   简单对比
时间限制:1 s  
内存限制:512 MB

 #include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn=;
const int mod=;
char A[maxn],B[maxn];
int dp[maxn][maxn][maxn];
int n,m;
int main(){
freopen("ballb.in","r",stdin);
freopen("ballb.out","w",stdout);
scanf("%d%d",&n,&m);
scanf("%s%s",A+,B+);
dp[][][]=;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
for(int k=max(i+j-m,);k<=i+j;k++){
if(!i&&!j&&!k)continue;
int l=i+j-k;
if(A[i]==A[k]&&i&&k)dp[i][j][k]+=dp[i-][j][k-];
if(A[i]==B[l]&&i&&l)dp[i][j][k]+=dp[i-][j][k];
if(B[j]==A[k]&&j&&k)dp[i][j][k]+=dp[i][j-][k-];
if(B[j]==B[l]&&j&&l)dp[i][j][k]+=dp[i][j-][k];
dp[i][j][k]%=mod;
}
printf("%d\n",dp[n][m][n]);
return ;
}

  最开始想如果不平方,求结果不同的方案个数,发现几乎无法实现。

  这里有平方,就可以这样转化:把每种方案复制一遍,然后配对,只有相同才计入答案,简单地DP一下就解决了。

动态规划:NOI 2009 管道取珠的更多相关文章

  1. 解题:NOI 2009 管道取珠

    题面 考虑这个平方的实际意义,实际是说取两次取出一样的序列 那么设$dp[i][j][k][h]$表示第一次在上面取$i$个下面取$j$个,第二次在上面取$k$个下面取$h$个的方案数 等等$n^4$ ...

  2. 【BZOJ1566】【NOI2009】管道取珠(动态规划)

    [BZOJ1566][NOI2009]管道取珠(动态规划) 题面 BZOJ 题解 蛤?只有两档部分分.一脸不爽.jpg 第一档?爆搜,这么显然,爆搜+状压最后统计一下就好了 #include<i ...

  3. BZOJ 1566 【NOI2009】 管道取珠

    题目链接:管道取珠 这道题思路还是很巧妙的. 一开始我看着那个平方不知所措……看了题解后发现,这种问题有一类巧妙的转化.我们可以看成两个人来玩这个游戏,那么答案就是第二个人的每个方案在第一个人的所有方 ...

  4. 【BZOJ 1566】 1566: [NOI2009]管道取珠 (DP)

    1566: [NOI2009]管道取珠 Time Limit: 20 Sec  Memory Limit: 650 MBSubmit: 1659  Solved: 971 Description In ...

  5. BZOJ1566 【NOI2009】管道取珠

    题面 这是一道DP神题,直到我写下这句题解时也没有想明白…… 首先,这道题要我们求所有(不同输出序列的方案数)的平方和,于是我们当然就想到求所有不同输出序列的方案数……(大雾) .这道题一个巧妙的地方 ...

  6. Bzoj 1566: [NOI2009]管道取珠(DP)

    1566: [NOI2009]管道取珠 Time Limit: 20 Sec Memory Limit: 650 MB Submit: 1558 Solved: 890 [Submit][Status ...

  7. NOI2009 管道取珠 神仙DP

    原题链接 原题让求的是\(\sum\limits a_i^2\),这个东西直接求非常难求.我们考虑转化一下问题. 首先把\(a_i^2\)拆成\((1+1+...+1)(1+1+...+1)\),两个 ...

  8. BZOJ.1566.[NOI2009]管道取珠(DP 思路)

    BZOJ 洛谷 考虑\(a_i^2\)有什么意义:两个人分别操作原序列,使得得到的输出序列都为\(i\)的方案数.\(\sum a_i^2\)就是两人得到的输出序列相同的方案数. \(f[i][j][ ...

  9. BZOJ 1566 管道取珠(DP)

    求方案数的平方之和.这个看起来很难解决.如果转化为求方案数的有序对的个数.那么就相当于求A和B同时取,最后序列一样的种数. 令dp[i][j][k]表示A在上管道取了i个,下管道取了j个,B在上管道取 ...

随机推荐

  1. list-style无颜色问题解决,list-style-type无颜色解决

    list-style无颜色问题解决,list-style-type无颜色解决 >>>>>>>>>>>>>>>& ...

  2. 很好用的Tab标签切换功能,延迟Tab切换。

    一个网页,Tab标签的切换是常见的功能,但我发现很少有前端工程师在做该功能的时候,会为用户多想想,如果你觉得鼠标hover到标签上,然后切换到相应的内容,就那么简单的话,你将是一个不合格的前端工程师啊 ...

  3. Linux 查看系统硬件信息(实例详解)

    原文链接:http://www.cnblogs.com/ggjucheng/archive/2013/01/14/2859613.html linux查看系统的硬件信息,并不像windows那么直观, ...

  4. List<T>取交集、差集、并集

    1.  取交集 (A和B都有) List A : { 1 , 2 , 3 , 5 , 9 }List B : { 4 , 3 , 9 }var intersectedList = list1.Inte ...

  5. redhat6.4 配置centos6 yum替换

    1.卸载掉系统redhat自带的yum   rpm -qa |grep yum |xargs rpm -e --nodeps 2 下载相关的centos yum插件   主要有python-inipa ...

  6. C#获取本机IP搜集整理7种方法

    今天打算试着写个小聊天程序,但是要用到获取本机IP,以前从没用过.摆渡百度了一会儿,出于贪心,想把各种获取本机IP的方法给找出来.摆渡+测试了几个小时,于是有了下面的成果,有点小累,但看到这些成果,也 ...

  7. 【POJ3468】【zkw线段树】A Simple Problem with Integers

    Description You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. On ...

  8. linux 获取cpu百分比

    vmstat 1 |head -n 4 |tail -n 1 |awk '{print $13}'

  9. springMVC整合jedis+redis,以注解形式使用

    前两天写过 springMVC+memcached 的整合,我从这个基础上改造一下,把redis和springmvc整合到一起. 和memcached一样,redis也有java专用的客户端,官网推荐 ...

  10. Win8.1 64bit安装Genymotion模拟器

    其实安装并不复杂,只要环境正常,此事并不难.但估计最坏的情况都被我撞上了,才折腾了差不多一天的 那我有哪些环境不正常呢? 破解了系统主题 Device Install Service服务未启动 下面来 ...