[NOI2009] 管道取珠

输入文件:ballb.in   输出文件:ballb.out   简单对比
时间限制:1 s  
内存限制:512 MB

 #include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn=;
const int mod=;
char A[maxn],B[maxn];
int dp[maxn][maxn][maxn];
int n,m;
int main(){
freopen("ballb.in","r",stdin);
freopen("ballb.out","w",stdout);
scanf("%d%d",&n,&m);
scanf("%s%s",A+,B+);
dp[][][]=;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
for(int k=max(i+j-m,);k<=i+j;k++){
if(!i&&!j&&!k)continue;
int l=i+j-k;
if(A[i]==A[k]&&i&&k)dp[i][j][k]+=dp[i-][j][k-];
if(A[i]==B[l]&&i&&l)dp[i][j][k]+=dp[i-][j][k];
if(B[j]==A[k]&&j&&k)dp[i][j][k]+=dp[i][j-][k-];
if(B[j]==B[l]&&j&&l)dp[i][j][k]+=dp[i][j-][k];
dp[i][j][k]%=mod;
}
printf("%d\n",dp[n][m][n]);
return ;
}

  最开始想如果不平方,求结果不同的方案个数,发现几乎无法实现。

  这里有平方,就可以这样转化:把每种方案复制一遍,然后配对,只有相同才计入答案,简单地DP一下就解决了。

动态规划:NOI 2009 管道取珠的更多相关文章

  1. 解题:NOI 2009 管道取珠

    题面 考虑这个平方的实际意义,实际是说取两次取出一样的序列 那么设$dp[i][j][k][h]$表示第一次在上面取$i$个下面取$j$个,第二次在上面取$k$个下面取$h$个的方案数 等等$n^4$ ...

  2. 【BZOJ1566】【NOI2009】管道取珠(动态规划)

    [BZOJ1566][NOI2009]管道取珠(动态规划) 题面 BZOJ 题解 蛤?只有两档部分分.一脸不爽.jpg 第一档?爆搜,这么显然,爆搜+状压最后统计一下就好了 #include<i ...

  3. BZOJ 1566 【NOI2009】 管道取珠

    题目链接:管道取珠 这道题思路还是很巧妙的. 一开始我看着那个平方不知所措……看了题解后发现,这种问题有一类巧妙的转化.我们可以看成两个人来玩这个游戏,那么答案就是第二个人的每个方案在第一个人的所有方 ...

  4. 【BZOJ 1566】 1566: [NOI2009]管道取珠 (DP)

    1566: [NOI2009]管道取珠 Time Limit: 20 Sec  Memory Limit: 650 MBSubmit: 1659  Solved: 971 Description In ...

  5. BZOJ1566 【NOI2009】管道取珠

    题面 这是一道DP神题,直到我写下这句题解时也没有想明白…… 首先,这道题要我们求所有(不同输出序列的方案数)的平方和,于是我们当然就想到求所有不同输出序列的方案数……(大雾) .这道题一个巧妙的地方 ...

  6. Bzoj 1566: [NOI2009]管道取珠(DP)

    1566: [NOI2009]管道取珠 Time Limit: 20 Sec Memory Limit: 650 MB Submit: 1558 Solved: 890 [Submit][Status ...

  7. NOI2009 管道取珠 神仙DP

    原题链接 原题让求的是\(\sum\limits a_i^2\),这个东西直接求非常难求.我们考虑转化一下问题. 首先把\(a_i^2\)拆成\((1+1+...+1)(1+1+...+1)\),两个 ...

  8. BZOJ.1566.[NOI2009]管道取珠(DP 思路)

    BZOJ 洛谷 考虑\(a_i^2\)有什么意义:两个人分别操作原序列,使得得到的输出序列都为\(i\)的方案数.\(\sum a_i^2\)就是两人得到的输出序列相同的方案数. \(f[i][j][ ...

  9. BZOJ 1566 管道取珠(DP)

    求方案数的平方之和.这个看起来很难解决.如果转化为求方案数的有序对的个数.那么就相当于求A和B同时取,最后序列一样的种数. 令dp[i][j][k]表示A在上管道取了i个,下管道取了j个,B在上管道取 ...

随机推荐

  1. iOS 数据持久化(1):属性列表与对象归档

    @import url(http://i.cnblogs.com/Load.ashx?type=style&file=SyntaxHighlighter.css); @import url(/ ...

  2. Eclipse / Android : “Errors running builder 'Android Pre Compiler' on project…”

    Errors occurred during the build. Errors running builder 'Android Resource Manager' on project 'hell ...

  3. Junit简介和常用API

    测试几个的概念 白盒测试——把测试对象看作一个打开的盒子,程序内部的逻辑结构和其他信息对测试人员是公开的. 回归测试——软件或环境的修复或更正后的“再测试”,自动测试工具对这类测试尤其有用. 单元测试 ...

  4. Tomcat- java.lang.NoSuchMethodException: org.apache.catalina.deploy.WebXml addServlet

    在MyEclipse中启动Tomcat的时候报错: java.lang.NoSuchMethodException: org.apache.catalina.deploy.WebXml addServ ...

  5. 那些年,我们一起学WCF--(7)PerSession实例行为

    这一节,大家了解下PerSession实例行为,PerSession表示会话实例行为,当客户端调用服务器后,服务器端会为客户端分配一个新的服务实例,这个实例在服务器端SESSION时间过期后将失效.客 ...

  6. 用于显示上个月和下个月_PHP

    /** * 用于显示上个月和下个月 * @param int $sign 1:表示上个月 0:表示下个月 * @return string */ function GetMonth($sign=&qu ...

  7. Spring 创建bean的时机

    默认在启动spring容器的时候,spring容器配置文件中的类就已经创建完成对象了        在<bean>中添加属性lazy-init,默认值为false.    true  在c ...

  8. zTree异步生成数据时无法获取到子节点的选中状态

    最近在项目中遇到一个问题,需求如下: 根据选中不同的人员(ID)向后台发送ajax请求,通过返回的数据来生成该人员的权限访问树,该树目录最少为3级目录,在生成的时候会自动勾选上次保存过的选中状态,点击 ...

  9. ajax验证用户名和密码

    var user = form.name.value; var password = form.password.value; var url = "chkname.php?user=&qu ...

  10. CSS浮动元素的水平居中

    方法一: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> ...