[NOI2009] 管道取珠

输入文件:ballb.in   输出文件:ballb.out   简单对比
时间限制:1 s  
内存限制:512 MB

 #include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn=;
const int mod=;
char A[maxn],B[maxn];
int dp[maxn][maxn][maxn];
int n,m;
int main(){
freopen("ballb.in","r",stdin);
freopen("ballb.out","w",stdout);
scanf("%d%d",&n,&m);
scanf("%s%s",A+,B+);
dp[][][]=;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
for(int k=max(i+j-m,);k<=i+j;k++){
if(!i&&!j&&!k)continue;
int l=i+j-k;
if(A[i]==A[k]&&i&&k)dp[i][j][k]+=dp[i-][j][k-];
if(A[i]==B[l]&&i&&l)dp[i][j][k]+=dp[i-][j][k];
if(B[j]==A[k]&&j&&k)dp[i][j][k]+=dp[i][j-][k-];
if(B[j]==B[l]&&j&&l)dp[i][j][k]+=dp[i][j-][k];
dp[i][j][k]%=mod;
}
printf("%d\n",dp[n][m][n]);
return ;
}

  最开始想如果不平方,求结果不同的方案个数,发现几乎无法实现。

  这里有平方,就可以这样转化:把每种方案复制一遍,然后配对,只有相同才计入答案,简单地DP一下就解决了。

动态规划:NOI 2009 管道取珠的更多相关文章

  1. 解题:NOI 2009 管道取珠

    题面 考虑这个平方的实际意义,实际是说取两次取出一样的序列 那么设$dp[i][j][k][h]$表示第一次在上面取$i$个下面取$j$个,第二次在上面取$k$个下面取$h$个的方案数 等等$n^4$ ...

  2. 【BZOJ1566】【NOI2009】管道取珠(动态规划)

    [BZOJ1566][NOI2009]管道取珠(动态规划) 题面 BZOJ 题解 蛤?只有两档部分分.一脸不爽.jpg 第一档?爆搜,这么显然,爆搜+状压最后统计一下就好了 #include<i ...

  3. BZOJ 1566 【NOI2009】 管道取珠

    题目链接:管道取珠 这道题思路还是很巧妙的. 一开始我看着那个平方不知所措……看了题解后发现,这种问题有一类巧妙的转化.我们可以看成两个人来玩这个游戏,那么答案就是第二个人的每个方案在第一个人的所有方 ...

  4. 【BZOJ 1566】 1566: [NOI2009]管道取珠 (DP)

    1566: [NOI2009]管道取珠 Time Limit: 20 Sec  Memory Limit: 650 MBSubmit: 1659  Solved: 971 Description In ...

  5. BZOJ1566 【NOI2009】管道取珠

    题面 这是一道DP神题,直到我写下这句题解时也没有想明白…… 首先,这道题要我们求所有(不同输出序列的方案数)的平方和,于是我们当然就想到求所有不同输出序列的方案数……(大雾) .这道题一个巧妙的地方 ...

  6. Bzoj 1566: [NOI2009]管道取珠(DP)

    1566: [NOI2009]管道取珠 Time Limit: 20 Sec Memory Limit: 650 MB Submit: 1558 Solved: 890 [Submit][Status ...

  7. NOI2009 管道取珠 神仙DP

    原题链接 原题让求的是\(\sum\limits a_i^2\),这个东西直接求非常难求.我们考虑转化一下问题. 首先把\(a_i^2\)拆成\((1+1+...+1)(1+1+...+1)\),两个 ...

  8. BZOJ.1566.[NOI2009]管道取珠(DP 思路)

    BZOJ 洛谷 考虑\(a_i^2\)有什么意义:两个人分别操作原序列,使得得到的输出序列都为\(i\)的方案数.\(\sum a_i^2\)就是两人得到的输出序列相同的方案数. \(f[i][j][ ...

  9. BZOJ 1566 管道取珠(DP)

    求方案数的平方之和.这个看起来很难解决.如果转化为求方案数的有序对的个数.那么就相当于求A和B同时取,最后序列一样的种数. 令dp[i][j][k]表示A在上管道取了i个,下管道取了j个,B在上管道取 ...

随机推荐

  1. Maven学习总结——聚合与继承

    一.聚合 如果我们想一次构建多个项目模块,那我们就需要对多个项目模块进行聚合 1.1.聚合配置代码 1 <modules> 2 <module>模块一</module&g ...

  2. 【python之路8】python基本数据类型(二)

    基本数据类型 4.列表(list) 创建列表 name_list = ['zhao','qian','sun','li'] 基本操作 索引 print(name_list[0]) #返回zhao pr ...

  3. bash: ./configure: 权限不够 怎么办?

    configure没有执行权限 通过chmod给其加上x权限 chmod +x configure 再在该用户下执行 ./configure

  4. oracle模糊查询效率可这样提高

    1.使用两边加'%'号的查询,oracle是不通过索引的,所以查询效率很低. 例如:select count(*) from lui_user_base t where t.user_name lik ...

  5. WPF DataBinding之我见

    原创,转载请注明出处:WPF DataBinding之我见 一.DataBinding介绍   数据绑定是在应用程序 UI 与业务逻辑之间建立连接的过程. 如果绑定具有正确设置并且数据提供正确通知,则 ...

  6. 解决mac上Android开发时出现的ADB server didn't ACK

    mac 上adb连接不到android手机可以参考:这里 xxxdeMacPro:~ xxx$ adb start-server * daemon not running. starting it n ...

  7. ExtJs中动态加载机制研究(转)

    觉得写的太好了,怕弄丢了,转一下:http://extjs.org.cn/node/659 昨天我们team对于extjs的动态加载机制做了些深入研究,这里先share下controller加载的结果 ...

  8. CentOS中vsftp安装、配置、卸载

    1. 安装VSFTP 1 [root@localhost ~]# yum -y install vsftpd 2. 配置vsftpd.conf文件 [root@localhost ~]# vi /et ...

  9. C# .NET3.5 改为 到.NET2.0 时 TypedTableBase 报错解决方法

    NET 3.5 降版本 到.NET 2.0.不出意外,问题必然来了.编译错误一:错误 1 命名空间“System”中不存在类型或命名空间名称“Linq”(是缺少程序集引用吗?)解决:删掉该引用--没用 ...

  10. PHP面向对象(OOP):克隆对象__clone()方法

    有的时候我们需要在一个项目里面,使用两个或多个一样的对象,如果你使用“new”关键字重新创建对象的话,再赋值上相同的属性,这样做比较烦琐而且也容易出错,所以要根据一个对象完全克隆出一个一模一样的对象, ...