28. [NOI2006] 最大获利

★★★☆   输入文件:profit.in   输出文件:profit.out   简单对比
时间限制:2 s  
内存限制:512 MB

【问题描述】

新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战。THU 集团旗下的CS&T 通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研究、站址勘测、最优化等项目。
    在前期市场调查和站址勘测之后,公司得到了一共N
个可以作为通讯信号中转站的地址,而由于这些地址的地理位置差异,在不同的地方建造通讯中转站需要投入的成本也是不一样的,所幸在前期调查之后这些都是已
知数据:建立第i个通讯中转站需要的成本为Pi(1≤i≤N)。
    另外公司调查得出了所有期望中的用户群,一共M 个。关于第i 个用户群的信息概括为Ai, Bi 和Ci:这些用户会使用中转站Ai 和中转站Bi 进行通讯,公司可以获益Ci。(1≤i≤M, 1≤Ai, Bi≤N)
THU 集团的CS&T 公司可以有选择的建立一些中转站(投入成本),为一些用户提供服务并获得收益(获益之和)。那么如何选择最终建立的中转站才能让公司的净获利最大呢?(净获利 = 获益之和 – 投入成本之和)

【输入文件】

输入文件中第一行有两个正整数N 和M 。
第二行中有N 个整数描述每一个通讯中转站的建立成本,依次为P1, P2, …, PN 。
以下M 行,第(i + 2)行的三个数Ai, Bi 和Ci 描述第i 个用户群的信息。
所有变量的含义可以参见题目描述。

【输出文件】

你的程序只要向输出文件输出一个整数,表示公司可以得到的最大净获利。

【样例输入】

profit.in

5 5
1 2 3 4 5
1 2 3
2 3 4
1 3 3
1 4 2
4 5 3

【样例输出】

profit.out

4

【样例说明】

选择建立1、2、3 号中转站,则需要投入成本6,获利为10,因此得到最大收益4。

【评分方法】

本题没有部分分,你的程序的输出只有和我们的答案完全一致才能获得满分,否则不得分。

【数据规模和约定】

80%的数据中:N≤200,M≤1 000。
100%的数据中:N≤5 000,M≤50 000,0≤Ci≤100,0≤Pi≤100。

  自己想的,乱建模水过了~~~

 #include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int INF=;
const int maxn=;
const int maxm=;
int cnt=,fir[maxn],nxt[maxm],to[maxm],cap[maxm];
void addedge(int a,int b,int v){
nxt[++cnt]=fir[a];to[cnt]=b;fir[a]=cnt;cap[cnt]=v;
} int q[maxn],dis[maxn],gap[maxn],path[maxn],n,m; void BFS(int S,int T){
int front=,back=;
memset(dis,,sizeof(dis));
dis[T]=;q[back++]=T;
while(front<back){
int node=q[front++];
for(int i=fir[node];i;i=nxt[i]){
if(dis[to[i]])continue;
dis[to[i]]=dis[node]+;
q[back++]=to[i];
}
}
}
int fron[maxn];
int Max_flow(int S,int T){
BFS(S,T);
memset(gap,,sizeof(gap));
for(int i=S;i<=T;i++)++gap[dis[i]];
int ret=,p=S,f;
memcpy(fron,fir,sizeof(fir));
while(dis[S]<=T){
if(p==T){
f=;
while(p!=S){
f=min(f,cap[path[p]]);
p=to[path[p]^];
}
ret+=f;p=T;
while(p!=S){
cap[path[p]]-=f;
cap[path[p]^]+=f;
p=to[path[p]^];
}
}
int &ii=fron[p];
for(;ii;ii=nxt[ii])
if(cap[ii]&&dis[p]==dis[to[ii]]+)
break; if(ii)
path[p=to[ii]]=ii;
else{
if(--gap[dis[p]]==)break;
int minn=T+;
for(int i=fir[p];i;i=nxt[i])
if(cap[i])
minn=min(minn,dis[to[i]]);
gap[dis[p]=minn+]++;
ii=fir[p];
if(p!=S)
p=to[path[p]^];
}
}
return ret;
} int main(){
freopen("profit.in","r",stdin);
freopen("profit.out","w",stdout);
int ans=,tot=;
scanf("%d%d",&n,&m);
for(int i=,d;i<=n;i++){
scanf("%d",&d);ans-=d;
tot+=d;
addedge(,i,d);
addedge(i,,);
}
for(int i=n+,d,a,b;i<=m+n;i++){
scanf("%d%d%d",&a,&b,&d);
tot+=d;
addedge(a,i,INF);
addedge(i,a,); addedge(b,i,INF);
addedge(i,b,); addedge(i,n+m+,d);
addedge(n+m+,i,);
}
printf("%d\n",ans+tot-Max_flow(,n+m+));
}

网络流(最大流):COGS 28 [NOI2006] 最大获利的更多相关文章

  1. BZOJ 1497: [NOI2006]最大获利( 最大流 )

    下午到周六早上是期末考试...但是我还是坚守在机房....要挂的节奏啊.... 这道题就是网络流 , 建图后就最大流跑啊跑啊跑... --------------------------------- ...

  2. BZOJ 1497 [NOI2006]最大获利 ——网络流

    [题目分析] 最大权闭合子图. S到集合1容量为获利的大小,集合2到T为所需要付出的相反数. 然后求出最大流,然后用总的获利相减即可. [代码] #include <cstdio> #in ...

  3. P4174 [NOI2006]最大获利(网络流)

    P4174 [NOI2006]最大获利 还是最大权闭合子图的题 对于每个中转站$k$:$link(k,T,P_k)$ 对于每个用户$i$.中转站$A_i,B_i$.贡献$C_i$ $link(S,i, ...

  4. bzoj1497: [NOI2006]最大获利(最大权闭合子图)

    1497: [NOI2006]最大获利 题目:传送门 题解: %%%关于最大权闭合子图很好的入门题 简单说一下什么叫最大权闭合子图吧...最简单的解释就是正权边连源点,负权边连汇点(注意把边权改为正数 ...

  5. P4174 [NOI2006]最大获利 (最大权闭合子图)

    P4174 [NOI2006]最大获利 (最大权闭合子图) 题目链接 题意 建\(i\)站台需要\(p_i\)的花费,当\(A_i,B_i\)都建立时获得\(C_i\)的利润,求最大的利润 思路 最大 ...

  6. 1497: [NOI2006]最大获利(最大权闭合子图)

    1497: [NOI2006]最大获利 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 5503  Solved: 2673 Description 新的技 ...

  7. [NOI2006] 最大获利

    [NOI2006] 最大获利 ★★★☆   输入文件:profit.in   输出文件:profit.out   简单对比时间限制:2 s   内存限制:512 MB [问题描述] 新的技术正冲击着手 ...

  8. BZOJ1497: [NOI2006]最大获利[最小割 最大闭合子图]

    1497: [NOI2006]最大获利 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 4375  Solved: 2142[Submit][Status] ...

  9. BZOJ 1497: [NOI2006]最大获利 最小割

    1497: [NOI2006]最大获利 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1497 Description 新的技术正冲击着手 ...

随机推荐

  1. .NET中TextBox控件设置ReadOnly=true后台取不到值三种解决方法

    当TextBox设置了ReadOnly=true后要是在前台为控件添加了值,后台是取不到的,值为空,多么郁闷的一个问题经过尝试,发现可以通过如下的方式解决这个问题.感兴趣的朋友可以了解下 当TextB ...

  2. inner join

    select Person.LastName,Person.FirstName,Orders.OrderNo from Persons INNER JOIN Orders ON Person.Id_P ...

  3. ToString格式.

    C 货币 2.5.ToString("C") ¥2.50 D 十进制数 25.ToString("D5") 00025 E 科学型 25000.ToString ...

  4. SQL某个字段在原内容上增加固定内容或replace查找替换内容

    今天正好遇到一个SQL小问题,特做备注 在原有的表中数据如pic 在不动原内容的基础上增加../路径,但不能修改原数据值 原数据 SQL: pic字段 需要增加'../'的内容 update Bmps ...

  5. 第二篇、Maven快速上手

    1.目标 该篇主要是为了快速利用maven来构建工程,maven作为项目管理的工具已经得到极大程度的应用,很多开源项目都用maven来构建.如何建立 一个maven工程,如何导入别人的maven工程, ...

  6. iOS 视频播放横屏,隐藏状态栏

    MPMoviePlayerViewController *moviePlayerViewController = [[MPMoviePlayerViewController alloc] init]; ...

  7. centos7/RHEL7安装LibreOffice

    1.下载 wget http://download.documentfoundation.org/libreoffice/testing/4.4.0/rpm/x86_64/LibreOfficeDev ...

  8. 解决ListView异步加载图片错乱问题 .

    发一个异步图片加载控件.网上也有大把的异步网络加载图片的控件,但是有一个问题,异步加载会造成列表中的图片混乱,因为列表的每一项的View都可能被重用,异步加载的时候多个异步线程引用到了同一个View将 ...

  9. php 之 查询 投票练习(0508)

    练习题目: 解题: 方法一: 1. 投票主页面: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" ...

  10. ubuntu install opengrok

    总结: 1. 安装jdk和tomcat 2. 安装ctags 3. 解压opengrok.tar.gz包, 然后将source.war复制到tomcat/webapp下面 sudo cp -R ope ...