4517: [Sdoi2016]排列计数

Time Limit: 60 Sec  Memory Limit: 128 MB
Submit: 693  Solved: 434
[Submit][Status][Discuss]

Description

求有多少种长度为 n 的序列 A,满足以下条件:
1 ~ n 这 n 个数在序列中各出现了一次
若第 i 个数 A[i] 的值为 i,则称 i 是稳定的。序列恰好有 m 个数是稳定的
满足条件的序列可能很多,序列数对 10^9+7 取模。

Input

第一行一个数 T,表示有 T 组数据。
接下来 T 行,每行两个整数 n、m。
T=500000,n≤1000000,m≤1000000

Output

输出 T 行,每行一个数,表示求出的序列数

Sample Input

5
1 0
1 1
5 2
100 50
10000 5000

Sample Output

0
1
20
578028887
60695423
  
  错排还是很简单的……

 #include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn=;
const long long mod=1000000007LL;
long long f[maxn],fac[maxn];
long long Inv(int x){
return x==?:(mod-mod/x)*Inv(mod%x)%mod;
} int main(){
#ifndef ONLINE_JUDGE
freopen("permutation.in","r",stdin);
freopen("permutation.out","w",stdout);
#endif
fac[]=;f[]=;f[]=;
for(int i=;i<=;i++)fac[i]=fac[i-]*i%mod;
for(int i=;i<=;i++)f[i]=(i-)*(f[i-]+f[i-])%mod; int T,n,m;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
printf("%d\n",f[n-m]*fac[n]%mod*Inv(fac[m])%mod*Inv(fac[n-m])%mod);
}
return ;
}

数学(错排):BZOJ 4517: [Sdoi2016]排列计数的更多相关文章

  1. BZOJ 4517: [Sdoi2016]排列计数 错排公式

    4517: [Sdoi2016]排列计数 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4517 Description 求有多少种长度为 ...

  2. BZOJ 4517: [Sdoi2016]排列计数 错排+逆元

    4517: [Sdoi2016]排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i, ...

  3. BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 911  Solved: 566[Submit][Status ...

  4. BZOJ 4517: [Sdoi2016]排列计数 [容斥原理]

    4517: [Sdoi2016]排列计数 题意:多组询问,n的全排列中恰好m个不是错排的有多少个 容斥原理强行推♂倒她 $恰好m个不是错排 $ \[ =\ \ge m个不是错排 - \ge m+1个不 ...

  5. Bzoj 4517: [Sdoi2016]排列计数(排列组合)

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MB Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ...

  6. BZOJ 4517: [Sdoi2016]排列计数 错排 + 组合

    从 $n$ 个数中选 $m$ 个不错排,那就是说 $n-m$ 个数是错排的. 用组合数乘一下就好了. Code: #include <cstdio> #include <algori ...

  7. bzoj 4517: [Sdoi2016]排列计数【容斥原理+组合数学】

    第一个一眼就A的容斥题! 这个显然是容斥的经典问题------错排,首先考虑没有固定的情况,设\( D_n \)为\( n \)个数字的错排方案数. \[ D_n=n!-\sum_{t=1}^{n}( ...

  8. BZOJ.4517.[SDOI2016]排列计数(错位排列 逆元)

    题目链接 错位排列\(D_n=(n-1)*(D_{n-1}+D_{n-2})\),表示\(n\)个数都不在其下标位置上的排列数. 那么题目要求的就是\(C_n^m*D_{n-m}\). 阶乘分母部分的 ...

  9. BZOJ 4517: [Sdoi2016]排列计数(组合数学)

    题面 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m ...

随机推荐

  1. css 选择符

    css参考手册:css.doyoe.com 在css3中,不同的浏览器可能需要不同的前缀,它表示该css属性或规则尚未成为W3C标准的一部分,是浏览器的私有属性,虽然目前较新版本的浏览器都是不需要前缀 ...

  2. linux,安装软件报错cannot create regular file '/usr/local/man/man1': No such file or directory

    make install时报错,如下 install: cannot create regular file '/usr/local/man/man1': No such file or direct ...

  3. 关于ASP.NET控件方面的学习(恢复版)

    前段时间没有把学习中的遇到的问题和解决方法详细总结,今天整理整理.. 鉴于我们这个研究生论文管理系统是小组形式,所以说虽然我只负责数据库,但是其它部分也多少有些工作方面的涉及,最后感谢各位同学和老师的 ...

  4. JDBC标准事物编程模式

    事物简介: 事物是一种数据库中保证交易可靠的机制,JDBC支持数据库中事物的概念,默认情况下事物是默认提交的. 事物的特性: 1.事物必须是原子工作单元,对于其数据的修改,要么都执行,要么都不执行2. ...

  5. Java中char占用几个字节

    在讨论这个问题之前,我们需要先区分unicode和UTF. unicode :统一的字符编号,仅仅提供字符与编号间映射.符号数量在不断增加,已超百万.详细:[https://zh.wikipedia. ...

  6. POJ 2186.Popular Cows (强连通)

    强连通缩点,统计入度为1的缩点后的点的个数 个数1的话输出这个强连通分量的点的数量 否则输出0: code /* Kosaraju算法,无向图的强连通分量,时间复杂度O(n+m) 思路: 按照图G的深 ...

  7. centos7 开机启动某些程序的方法

    针对svn,nginx每次重启后均要手工启动,好麻烦,所以考虑将其做成开机启动,做成服务好麻烦,考虑像windows 一样,放在某个启动项中完成. 打开启动文件后,发现里面文件内容如下: #!/bin ...

  8. sql查询一个班级中总共有多少人以及男女分别多少人

    --创建视图 create view StuClassView as SELECT s.ID ,s.StuName ,s.StuAge ,s.StuAddress ,s.StuTel ,s.Class ...

  9. PAT - 基础 - 最大公约数和最小公倍数

    题目: 本题要求两个给定正整数的最大公约数和最小公倍数. 输入格式: 输入在一行中给出2个正整数M和N(<=1000). 输出格式: 在一行中顺序输出M和N的最大公约数和最小公倍数,两数字间以1 ...

  10. 关于本地计算机无法启动Apache2

    最近因工作需要,要学习PHP的基础编程,于是学习架设PHP工作环境. 但按照教材上介绍的那样,安装了WMAP后,一直无法运行成功.后发现Apache一直都不在运行状态.到WMAP中的Apache选项中 ...