4517: [Sdoi2016]排列计数

Time Limit: 60 Sec  Memory Limit: 128 MB
Submit: 693  Solved: 434
[Submit][Status][Discuss]

Description

求有多少种长度为 n 的序列 A,满足以下条件:
1 ~ n 这 n 个数在序列中各出现了一次
若第 i 个数 A[i] 的值为 i,则称 i 是稳定的。序列恰好有 m 个数是稳定的
满足条件的序列可能很多,序列数对 10^9+7 取模。

Input

第一行一个数 T,表示有 T 组数据。
接下来 T 行,每行两个整数 n、m。
T=500000,n≤1000000,m≤1000000

Output

输出 T 行,每行一个数,表示求出的序列数

Sample Input

5
1 0
1 1
5 2
100 50
10000 5000

Sample Output

0
1
20
578028887
60695423
  
  错排还是很简单的……

 #include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn=;
const long long mod=1000000007LL;
long long f[maxn],fac[maxn];
long long Inv(int x){
return x==?:(mod-mod/x)*Inv(mod%x)%mod;
} int main(){
#ifndef ONLINE_JUDGE
freopen("permutation.in","r",stdin);
freopen("permutation.out","w",stdout);
#endif
fac[]=;f[]=;f[]=;
for(int i=;i<=;i++)fac[i]=fac[i-]*i%mod;
for(int i=;i<=;i++)f[i]=(i-)*(f[i-]+f[i-])%mod; int T,n,m;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
printf("%d\n",f[n-m]*fac[n]%mod*Inv(fac[m])%mod*Inv(fac[n-m])%mod);
}
return ;
}

数学(错排):BZOJ 4517: [Sdoi2016]排列计数的更多相关文章

  1. BZOJ 4517: [Sdoi2016]排列计数 错排公式

    4517: [Sdoi2016]排列计数 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4517 Description 求有多少种长度为 ...

  2. BZOJ 4517: [Sdoi2016]排列计数 错排+逆元

    4517: [Sdoi2016]排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i, ...

  3. BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 911  Solved: 566[Submit][Status ...

  4. BZOJ 4517: [Sdoi2016]排列计数 [容斥原理]

    4517: [Sdoi2016]排列计数 题意:多组询问,n的全排列中恰好m个不是错排的有多少个 容斥原理强行推♂倒她 $恰好m个不是错排 $ \[ =\ \ge m个不是错排 - \ge m+1个不 ...

  5. Bzoj 4517: [Sdoi2016]排列计数(排列组合)

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MB Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ...

  6. BZOJ 4517: [Sdoi2016]排列计数 错排 + 组合

    从 $n$ 个数中选 $m$ 个不错排,那就是说 $n-m$ 个数是错排的. 用组合数乘一下就好了. Code: #include <cstdio> #include <algori ...

  7. bzoj 4517: [Sdoi2016]排列计数【容斥原理+组合数学】

    第一个一眼就A的容斥题! 这个显然是容斥的经典问题------错排,首先考虑没有固定的情况,设\( D_n \)为\( n \)个数字的错排方案数. \[ D_n=n!-\sum_{t=1}^{n}( ...

  8. BZOJ.4517.[SDOI2016]排列计数(错位排列 逆元)

    题目链接 错位排列\(D_n=(n-1)*(D_{n-1}+D_{n-2})\),表示\(n\)个数都不在其下标位置上的排列数. 那么题目要求的就是\(C_n^m*D_{n-m}\). 阶乘分母部分的 ...

  9. BZOJ 4517: [Sdoi2016]排列计数(组合数学)

    题面 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m ...

随机推荐

  1. C#解leetcode 64. Minimum Path Sum

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...

  2. C#Socket编程socket.Connect权限出错问题及解决

    最近使用Vs2010编写Socket程序,客户端在调用socket.Connect()时,总是出现: 请求“System.Net.SocketPermission, System, Version=4 ...

  3. 关于 Repository和UnitOfWork 模式的关系

    本以为,关于这方面的理解,园子中的文章已经很多的了,再多做文章真的就“多做文章了”,但是最近发现,还是有必要的,首先,每个人对于同一事物的理解方式和出发点都是不同的,所以思考的方式得到结果也是不同的. ...

  4. 菜鸟学开店—最简收银POS系统

    佳博打印机代理商淘宝店https://shop107172033.taobao.com/index.htm?spm=2013.1.w5002-9520741823.2.Sqz8Pf 在此店购买的打印机 ...

  5. Maven搭建Spring+Struts2+Hibernate项目详解

    http://www.bubuko.com/infodetail-648898.html

  6. oracle中所有关于时间日期的问题总结

    select current_date as 当前会话时间,sysdate as 系统时间, systimestamp as 系统详细时间 from dual;

  7. oracle-绑定变量学习笔记(未完待续)

    --定义变量SQL> var a number; --给绑定变量赋值SQL> exec :a :=123; PL/SQL procedure successfully completed. ...

  8. 玩转CSLA.NET小技巧系列二:使用WCF无法上传附件,提示413 Entity Too Large

    背景:由于系统需要展示图片,客户上传图片到本地客户端目录,然后在数据库中存储本地图片地址,和图片二进制数据 错误原因:我是使用CSLA的WCF服务,使用了数据门户,WCF协议使用的是wsHttpBin ...

  9. Alljoyn 概述(3)

    开发工具 • scons:一个 Python写的自动化构建工具,是对 gnu make 改进的替代工具 • D-Feet:一个D-Bus调试工具 • C++ Code Generator Tool ( ...

  10. javascript的框架演化

    说起javascript不同的人或许有不同的看法,一些资深后台程序员在刚开始的时候根本没有把它当作是一门编程语言,但是随着后面js框架的出现,以及面向对象的程序设计,还有原型,闭包的不断使用,后台程序 ...