Navigation Nightmare

Description

Farmer John's pastoral neighborhood has N farms (2 <= N <= 40,000), usually numbered/labeled 1..N. A series of M (1 <= M < 40,000) vertical and horizontal roads each of varying lengths (1 <= length <= 1000) connect the farms. A map of these farms might look something like the illustration below in which farms are labeled F1..F7 for clarity and lengths between connected farms are shown as (n):

           F1 --- (13) ---- F6 --- (9) ----- F3

| |

(3) |

| (7)

F4 --- (20) -------- F2 |

| |

(2) F5

|

F7

Being an ASCII diagram, it is not precisely to scale, of course.

Each farm can connect directly to at most four other farms via roads that lead exactly north, south, east, and/or west. Moreover, farms are only located at the endpoints of roads, and some farm can be found at every endpoint of every road. No two roads cross, and precisely one path 
(sequence of roads) links every pair of farms.

FJ lost his paper copy of the farm map and he wants to reconstruct it from backup information on his computer. This data contains lines like the following, one for every road:

There is a road of length 10 running north from Farm #23 to Farm #17 
There is a road of length 7 running east from Farm #1 to Farm #17 
...

As FJ is retrieving this data, he is occasionally interrupted by questions such as the following that he receives from his navigationally-challenged neighbor, farmer Bob:

What is the Manhattan distance between farms #1 and #23?

FJ answers Bob, when he can (sometimes he doesn't yet have enough data yet). In the example above, the answer would be 17, since Bob wants to know the "Manhattan" distance between the pair of farms. 
The Manhattan distance between two points (x1,y1) and (x2,y2) is just |x1-x2| + |y1-y2| (which is the distance a taxicab in a large city must travel over city streets in a perfect grid to connect two x,y points).

When Bob asks about a particular pair of farms, FJ might not yet have enough information to deduce the distance between them; in this case, FJ apologizes profusely and replies with "-1".

Input

* Line 1: Two space-separated integers: N and M

* Lines 2..M+1: Each line contains four space-separated entities, F1,

F2, L, and D that describe a road. F1 and F2 are numbers of

two farms connected by a road, L is its length, and D is a

character that is either 'N', 'E', 'S', or 'W' giving the

direction of the road from F1 to F2. * Line M+2: A single integer, K (1 <= K <= 10,000), the number of FB's

queries * Lines M+3..M+K+2: Each line corresponds to a query from Farmer Bob

and contains three space-separated integers: F1, F2, and I. F1

and F2 are numbers of the two farms in the query and I is the

index (1 <= I <= M) in the data after which Bob asks the

query. Data index 1 is on line 2 of the input data, and so on.

Output

* Lines 1..K: One integer per line, the response to each of Bob's

queries. Each line should contain either a distance

measurement or -1, if it is impossible to determine the

appropriate distance.

Sample Input

7 6
1 6 13 E
6 3 9 E
3 5 7 S
4 1 3 N
2 4 20 W
4 7 2 S
3
1 6 1
1 4 3
2 6 6

Sample Output

13
-1
10

Hint

At time 1, FJ knows the distance between 1 and 6 is 13. 
At time 3, the distance between 1 and 4 is still unknown. 
At the end, location 6 is 3 units west and 7 north of 2, so the distance is 10. 

Source

 
 
【题意】
  约翰所在的乡村可以看做一个二维平面,其中有 N 座牧场,每座牧场都有自己的坐标,编号为 1
N。牧场间存在一些道路,每条道路道路连接两个不同的牧场,方向必定平行于 X 轴或 Y 轴。乡
下地方的道路不会太多,连通两座牧场之间的路径是唯一的。
突然间,约翰的导航仪失灵了,牧场的坐标记录全部消失了。所幸的是,约翰找到了表示道路的
数据,可以通过这些信息得知牧场间的相对位置。但贝西有急事,在约翰工作到一半的时候就要知道
一些牧场间的曼哈顿距离。这时,如果约翰能从找回的道路信息之间推算出答案,就会告诉贝西。请
你帮助约翰来回答贝西的问题吧。 ( x 1 , y 1) 和 ( x 2 , y 2) 间的曼哈顿距离定义为 | x 1 x 2| + | y1 y2|

 
【分析】
  妈妈啊这题打的一大半都是搞这个输入,在线就在线,要不要这么恶心!!!醉~~
  啊,带权并查集,就是还原并查集为一棵树,然后在改变fa的时候改一下就好了。
  这棵并查集树当然是层数越少越好咯。权值我记录的是它的横坐标与纵坐标跟父亲的差值,更改父亲的时候(就是抛弃原来的父亲的时候)把父亲的权值加到自己身上再修改。
  然后合并两棵树,就先把一个点弄成那个并查集树的跟,其实做一遍find就已经把它放在根的儿子了,再交换一下根就好了,然后就把整颗树插进去就好了。
  嗯,自己YY一下都可以Y出来的啦。。
  代码长度绝对是因为输入太!!恶心!!
 
代码如下:
 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
#define Maxn 40010 int fa[Maxn],nx[Maxn],ny[Maxn]; int myabs(int x) {return x>?x:-x;} int ffind(int x)
{
int y=fa[x];
if(x!=fa[x]) fa[x]=ffind(fa[x]);
nx[x]+=nx[y];ny[x]+=ny[y];
return fa[x];
} char s[]; struct node
{
int x,y,c,p;
int ans;
}t[],tt[]; bool cmp(node x,node y) {return x.c<y.c;}
bool cmp2(node x,node y) {return x.p<y.p;} int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) fa[i]=i,nx[i]=ny[i]=;
for(int i=;i<=m;i++)
{
int x,y,c;
scanf("%d%d%d%s",&x,&y,&c,s); t[i].x=x;t[i].y=y;t[i].c=c;
if(s[]=='E') t[i].p=;
else if(s[]=='W') t[i].p=;
else if(s[]=='N') t[i].p=;
else t[i].p=;
}
int q;
scanf("%d",&q);
for(int i=;i<=q;i++)
{
int x,y,c;
scanf("%d%d%d",&x,&y,&c);
tt[i].x=x;tt[i].y=y;tt[i].c=c;
tt[i].p=i;
}
sort(tt+,tt++q,cmp);
int now=;
for(int i=;i<=q;i++)
{
while(now<tt[i].c)
{
now++;
int x=t[now].x,y=t[now].y,c=t[now].c;
int ff=ffind(y);
nx[ff]=-nx[y];ny[ff]=-ny[y];fa[ff]=y;
nx[y]=ny[y]=;fa[y]=x; if(t[now].p==) nx[y]=c;
else if(t[now].p==) nx[y]=-c;
else if(t[now].p==) ny[y]=c;
else ny[y]=-c;
} int x=tt[i].x,y=tt[i].y;
if(ffind(x)!=ffind(y)) tt[i].ans=-;
else
{
tt[i].ans=myabs(nx[x]-nx[y])+myabs(ny[x]-ny[y]);
}
}
sort(tt+,tt++q,cmp2);
for(int i=;i<=q;i++) printf("%d\n",tt[i].ans);
return ;
}

[POJ 1984]

2016-10-27 18:26:37

【POJ 1984】Navigation Nightmare(带权并查集)的更多相关文章

  1. POJ 1984 - Navigation Nightmare - [带权并查集]

    题目链接:http://poj.org/problem?id=1984 Time Limit: 2000MS Memory Limit: 30000K Case Time Limit: 1000MS ...

  2. POJ 1984 Navigation Nightmare 带全并查集

    Navigation Nightmare   Description Farmer John's pastoral neighborhood has N farms (2 <= N <= ...

  3. BZOJ 3362 Navigation Nightmare 带权并查集

    题目大意:给定一些点之间的位置关系,求两个点之间的曼哈顿距离 此题土豪题.只是POJ也有一道相同的题,能够刷一下 别被题目坑到了,这题不强制在线.把询问离线处理就可以 然后就是带权并查集的问题了.. ...

  4. POJ-1984-Navigation Nightmare+带权并查集(中级

    传送门:Navigation Nightmare 参考:1:https://www.cnblogs.com/huangfeihome/archive/2012/09/07/2675123.html 参 ...

  5. POJ 1773 Parity game 带权并查集

    分析:带权并查集,就是维护一堆关系 然后就是带权并查集的三步 1:首先确定权值数组,sum[i]代表父节点到子节点之间的1的个数(当然路径压缩后代表到根节点的个数) 1代表是奇数个,0代表偶数个 2: ...

  6. POJ 1182 食物链 【带权并查集】

    <题目链接> 题目大意: 动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我 ...

  7. POJ 1182 食物链 (带权并查集)

    食物链 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 78551   Accepted: 23406 Description ...

  8. POJ 1182 食物链 【带权并查集/补集法】

    动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种.有人用两种说 ...

  9. POJ 1733 Parity game (带权并查集)

    题意:有序列A[1..N],其元素值为0或1.有M条信息,每条信息表示区间[L,R]中1的个数为偶数或奇数个,但是可能有错误的信息.求最多满足前多少条信息. 分析:区间统计的带权并查集,只是本题中路径 ...

  10. poj 1182 食物链【带权并查集】

    设相等的边权为0,吃的边权为,被吃的边权为2,然后用带权并查集在%3的意义下做加法即可 关系为简单环的基本都可以用模环长的方式是用带权并查集 #include<iostream> #inc ...

随机推荐

  1. git设计哲学

    刚开始使用git的时候,总想拿git来和cvs或者svn来作对比,但不久后发现这个想法本身就是错的,git完全就是另外一种物种,一种本属于未来的物种.它的对象存储方式,快照,分支等,都是完全不同的. ...

  2. Web内容禁止选中的两种方式

    为了防止无良网站的爬虫抓取文章,特此标识,转载请注明文章出处.LaplaceDemon/ShiJiaqi. http://www.cnblogs.com/shijiaqi1066/p/5761818. ...

  3. Netty 5用户指南

    Netty是一个提供异步事件驱动的网络应用框架,用以快速开发高性能.高可靠性的网络服务器和客户端程序.换句话说,Netty是一个NIO框架,使用它可以简单快速地开发网络应用程序,比如客户端和服务端的协 ...

  4. 鼠标移动到表格的TD上的时候显示成一个手型的样子怎么做?

    在除了IE6的情况下,可以通过CSS的:hover伪类来实现: 假如你想设定的固定区域为: <div id="test"></div>,那么只需要在CSS样 ...

  5. MySQL(5.6) 函数

    字符串函数 ASCII(str) 说明:返回字符串 str 最左边字符的 ASCII 值 mysql'); mysql); mysql> SELECT ASCII('a'); mysql> ...

  6. 3dmax使用K帧工具创建一个行走动作

    第一步,创建一个biped骨骼. 这个就不截图了,因为基本都会. 记住一点,先改变了关键点再去修改,不然修改的是前一个关键帧的动作. 第二步,开启自动关键帧,然后给初始位置双脚添加踩踏关键点.设置关键 ...

  7. JDBC对sql server的操作

    1.过程: 1>注册驱动器类:Class.forName()       2>连接数据库:             String url = "jdbc:sqlserver:// ...

  8. iOS支付宝集成步骤;王刚韧的技术博客

  9. Library string Type

    The string type supports variable-length character strings.The library takes cares of managing memor ...

  10. 九度OJ 1084 整数拆分

    题目地址:http://ac.jobdu.com/problem.php?pid=1084 题目描述: 一个整数总可以拆分为2的幂的和,例如: 7=1+2+4 7=1+2+2+2 7=1+1+1+4 ...