【POJ 1984】Navigation Nightmare(带权并查集)
Navigation NightmareDescription
Farmer John's pastoral neighborhood has N farms (2 <= N <= 40,000), usually numbered/labeled 1..N. A series of M (1 <= M < 40,000) vertical and horizontal roads each of varying lengths (1 <= length <= 1000) connect the farms. A map of these farms might look something like the illustration below in which farms are labeled F1..F7 for clarity and lengths between connected farms are shown as (n):F1 --- (13) ---- F6 --- (9) ----- F3
| |
(3) |
| (7)
F4 --- (20) -------- F2 |
| |
(2) F5
|
F7Being an ASCII diagram, it is not precisely to scale, of course.
Each farm can connect directly to at most four other farms via roads that lead exactly north, south, east, and/or west. Moreover, farms are only located at the endpoints of roads, and some farm can be found at every endpoint of every road. No two roads cross, and precisely one path
(sequence of roads) links every pair of farms.FJ lost his paper copy of the farm map and he wants to reconstruct it from backup information on his computer. This data contains lines like the following, one for every road:
There is a road of length 10 running north from Farm #23 to Farm #17
There is a road of length 7 running east from Farm #1 to Farm #17
...As FJ is retrieving this data, he is occasionally interrupted by questions such as the following that he receives from his navigationally-challenged neighbor, farmer Bob:
What is the Manhattan distance between farms #1 and #23?
FJ answers Bob, when he can (sometimes he doesn't yet have enough data yet). In the example above, the answer would be 17, since Bob wants to know the "Manhattan" distance between the pair of farms.
The Manhattan distance between two points (x1,y1) and (x2,y2) is just |x1-x2| + |y1-y2| (which is the distance a taxicab in a large city must travel over city streets in a perfect grid to connect two x,y points).When Bob asks about a particular pair of farms, FJ might not yet have enough information to deduce the distance between them; in this case, FJ apologizes profusely and replies with "-1".
Input
* Line 1: Two space-separated integers: N and M * Lines 2..M+1: Each line contains four space-separated entities, F1,
F2, L, and D that describe a road. F1 and F2 are numbers of
two farms connected by a road, L is its length, and D is a
character that is either 'N', 'E', 'S', or 'W' giving the
direction of the road from F1 to F2. * Line M+2: A single integer, K (1 <= K <= 10,000), the number of FB's
queries * Lines M+3..M+K+2: Each line corresponds to a query from Farmer Bob
and contains three space-separated integers: F1, F2, and I. F1
and F2 are numbers of the two farms in the query and I is the
index (1 <= I <= M) in the data after which Bob asks the
query. Data index 1 is on line 2 of the input data, and so on.Output
* Lines 1..K: One integer per line, the response to each of Bob's
queries. Each line should contain either a distance
measurement or -1, if it is impossible to determine the
appropriate distance.Sample Input
7 6
1 6 13 E
6 3 9 E
3 5 7 S
4 1 3 N
2 4 20 W
4 7 2 S
3
1 6 1
1 4 3
2 6 6Sample Output
13
-1
10Hint
At time 1, FJ knows the distance between 1 and 6 is 13.
At time 3, the distance between 1 and 4 is still unknown.
At the end, location 6 is 3 units west and 7 north of 2, so the distance is 10.Source
到 N。牧场间存在一些道路,每条道路道路连接两个不同的牧场,方向必定平行于 X 轴或 Y 轴。乡
下地方的道路不会太多,连通两座牧场之间的路径是唯一的。
突然间,约翰的导航仪失灵了,牧场的坐标记录全部消失了。所幸的是,约翰找到了表示道路的
数据,可以通过这些信息得知牧场间的相对位置。但贝西有急事,在约翰工作到一半的时候就要知道
一些牧场间的曼哈顿距离。这时,如果约翰能从找回的道路信息之间推算出答案,就会告诉贝西。请
你帮助约翰来回答贝西的问题吧。 ( x 1 , y 1) 和 ( x 2 , y 2) 间的曼哈顿距离定义为 | x 1 − x 2| + | y1 − y2|。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
#define Maxn 40010 int fa[Maxn],nx[Maxn],ny[Maxn]; int myabs(int x) {return x>?x:-x;} int ffind(int x)
{
int y=fa[x];
if(x!=fa[x]) fa[x]=ffind(fa[x]);
nx[x]+=nx[y];ny[x]+=ny[y];
return fa[x];
} char s[]; struct node
{
int x,y,c,p;
int ans;
}t[],tt[]; bool cmp(node x,node y) {return x.c<y.c;}
bool cmp2(node x,node y) {return x.p<y.p;} int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) fa[i]=i,nx[i]=ny[i]=;
for(int i=;i<=m;i++)
{
int x,y,c;
scanf("%d%d%d%s",&x,&y,&c,s); t[i].x=x;t[i].y=y;t[i].c=c;
if(s[]=='E') t[i].p=;
else if(s[]=='W') t[i].p=;
else if(s[]=='N') t[i].p=;
else t[i].p=;
}
int q;
scanf("%d",&q);
for(int i=;i<=q;i++)
{
int x,y,c;
scanf("%d%d%d",&x,&y,&c);
tt[i].x=x;tt[i].y=y;tt[i].c=c;
tt[i].p=i;
}
sort(tt+,tt++q,cmp);
int now=;
for(int i=;i<=q;i++)
{
while(now<tt[i].c)
{
now++;
int x=t[now].x,y=t[now].y,c=t[now].c;
int ff=ffind(y);
nx[ff]=-nx[y];ny[ff]=-ny[y];fa[ff]=y;
nx[y]=ny[y]=;fa[y]=x; if(t[now].p==) nx[y]=c;
else if(t[now].p==) nx[y]=-c;
else if(t[now].p==) ny[y]=c;
else ny[y]=-c;
} int x=tt[i].x,y=tt[i].y;
if(ffind(x)!=ffind(y)) tt[i].ans=-;
else
{
tt[i].ans=myabs(nx[x]-nx[y])+myabs(ny[x]-ny[y]);
}
}
sort(tt+,tt++q,cmp2);
for(int i=;i<=q;i++) printf("%d\n",tt[i].ans);
return ;
}
[POJ 1984]
2016-10-27 18:26:37
【POJ 1984】Navigation Nightmare(带权并查集)的更多相关文章
- POJ 1984 - Navigation Nightmare - [带权并查集]
题目链接:http://poj.org/problem?id=1984 Time Limit: 2000MS Memory Limit: 30000K Case Time Limit: 1000MS ...
- POJ 1984 Navigation Nightmare 带全并查集
Navigation Nightmare Description Farmer John's pastoral neighborhood has N farms (2 <= N <= ...
- BZOJ 3362 Navigation Nightmare 带权并查集
题目大意:给定一些点之间的位置关系,求两个点之间的曼哈顿距离 此题土豪题.只是POJ也有一道相同的题,能够刷一下 别被题目坑到了,这题不强制在线.把询问离线处理就可以 然后就是带权并查集的问题了.. ...
- POJ-1984-Navigation Nightmare+带权并查集(中级
传送门:Navigation Nightmare 参考:1:https://www.cnblogs.com/huangfeihome/archive/2012/09/07/2675123.html 参 ...
- POJ 1773 Parity game 带权并查集
分析:带权并查集,就是维护一堆关系 然后就是带权并查集的三步 1:首先确定权值数组,sum[i]代表父节点到子节点之间的1的个数(当然路径压缩后代表到根节点的个数) 1代表是奇数个,0代表偶数个 2: ...
- POJ 1182 食物链 【带权并查集】
<题目链接> 题目大意: 动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我 ...
- POJ 1182 食物链 (带权并查集)
食物链 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 78551 Accepted: 23406 Description ...
- POJ 1182 食物链 【带权并查集/补集法】
动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种.有人用两种说 ...
- POJ 1733 Parity game (带权并查集)
题意:有序列A[1..N],其元素值为0或1.有M条信息,每条信息表示区间[L,R]中1的个数为偶数或奇数个,但是可能有错误的信息.求最多满足前多少条信息. 分析:区间统计的带权并查集,只是本题中路径 ...
- poj 1182 食物链【带权并查集】
设相等的边权为0,吃的边权为,被吃的边权为2,然后用带权并查集在%3的意义下做加法即可 关系为简单环的基本都可以用模环长的方式是用带权并查集 #include<iostream> #inc ...
随机推荐
- Magento网站如何添加一个可配置产品
有的产品,比如服装,同一件衣服有S.M.L.XL.XXL等尺码供客户选择,或者有多种颜色可以供客户选择,Magento中管这种有选项供客户选择的产品叫做可配置产品 (Configurable Prod ...
- 关于利用动态代理手写数据库连接池的异常 java.lang.ClassCastException: com.sun.proxy.$Proxy0 cannot be cast to java.sql.Connection
代码如下: final Connection conn=pool.remove(0); //利用动态代理改造close方法 Connection proxy= (Connection) Proxy.n ...
- 20151225jquery学习笔记---编辑器插件
编辑器(Editor),一般用于类似于 word 一样的文本编辑器,只不过是编辑为 HTML格式的.分类纯 JS 类型的,还有 jQuery 插件类型的.一. 编辑器简介我们使用的 jQuery 版本 ...
- 收集WCF文章
http://www.cnblogs.com/huyong/articles/1903482.html(WCF绑定类型选择) http://bbs.csdn.net/topics/390439835? ...
- php中怎么实现后台执行?
http://www.cnblogs.com/zdz8207/p/3765567.html php中实现后台执行的方法: ignore_user_abort(true); // 后台运行set_tim ...
- java.lang.NoSuchMethodError: org.apache.neethi.Policy.normalize(Z)Lorg/apache/neethi/PolicyComponent
记录一个org.apache.neethi包的异常 java.lang.NoSuchMethodError: org.apache.neethi.Policy.normalize(Z)Lorg/apa ...
- Quartz2.2.1操作手册
一.初识quartz JobDetail job = newJob(HelloJob.class).withIdentity("job1", "group1") ...
- 现代密码学应用的范例-PGP
PGP(Pretty Good Privacy),是一个基于RSA公钥加密体系的邮件加密软件. 产生背景: 电子邮件在传输中使用SMTP协议存在这样的问题 1.无法保证邮件在传输过程中不被人偷看 2. ...
- [翻译][MVC 5 + EF 6] 4:弹性连接和命令拦截
原文:Connection Resiliency and Command Interception with the Entity Framework in an ASP.NET MVC Applic ...
- Nginx中让 重写后的路径 自动增加斜线 /
http://www.111cn.net/sys/nginx/56067.htm(参考文章) 现在有个这样的需求,在重写的url地址后,自动加斜线 / 例如 xx.com/abc/1-2 (默认ur ...