Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 50596   Accepted: 19239

Description

The Joseph's problem is notoriously known. For those who are not familiar with the original problem: from among n people, numbered 1, 2, . . ., n, standing in circle every mth is going to be executed and only the life of the last remaining person will be saved. Joseph was smart enough to choose the position of the last remaining person, thus saving his life to give us the message about the incident. For example when n = 6 and m = 5 then the people will be executed in the order 5, 4, 6, 2, 3 and 1 will be saved.

Suppose that there are k good guys and k bad guys. In the circle the first k are good guys and the last k bad guys. You have to determine such minimal m that all the bad guys will be executed before the first good guy.

Input

The input file consists of separate lines containing k. The last line in the input file contains 0. You can suppose that 0 < k < 14.

Output

The output file will consist of separate lines containing m corresponding to k in the input file.

Sample Input

3
4
0

Sample Output

5
30

Source

THINKING

   本题是约瑟夫环变形 先引入Joseph递推公式,设有n个人(0,...,n-1),数m,则第i轮出局的人为f(i)=(f(i-1)+m-1)%(n-i+1),f(0)=0;

  f(i) 表示当前子序列中要退出的那个人(当前序列编号为0~(n-i));

  拿个例子说:K=4,M=30;

  f(0)=0;

  f(1)=(f(0)+30-1)%8=5; 序列(0,1,2,3,4,5,6,7)中的5

  f(2)=(f(1)+30-1)%7=6; 序列(0,1,2,3,4,6,7)中的7

  f(3)=(f(2)+30-1)%6=5; 序列(0,1,2,3,4,6)中的6

  f(4)=(f(3)+30-1)%5=4; 序列(0,1,2,3,4)中的4

  假设当前剩下i个人(i<=n),显然这一轮m要挂(因为总是从1开始数).经过这一轮,剩下的人是:1 2 3 ... m- 1 m + 1 ... i, 我们将从m+1开始的数映射成1, 则m+2对应2, n对应i - m, 1对应成i - m + 1  m - 1对应i - 1,那么现在的问题变成了已知i - 1个人进行循环报数m,求出去的人的序号。假设已经求出了i- 1个人循环报数下最后一个出去的人的序号X0,那么它在n个人中的序号X1=(X0+ m - 1) % n + 1,  最初的X0=1 ,反复迭代X0和X1可以求出.

  接下来说说m的取值范围:我们考察一下只剩下k+1个人时候情况,即坏人还有一个未被处决,那么在这一轮中结束位置必定在最后一个坏人,那么开始位置在哪呢?这就需要找K+2个人的结束位置,然而K+2个人的结束位置必定是第K+2个人或者第K+1个人,这样就出现两种顺序情况:GGGG.....GGGXB 或  GGGG......GGGBX (X表示有K+2个人的那一轮退出的人)所以有K+1个人的那一轮的开始位置有两种可能即第一个位置或K+1的那个位置,限定m有两种可能:t(k+1) 或 t(k+1)+1; t>=1; 若遍历每一个m必定超时,避免超时则需要打表和限制m的范围。

const Joseph:array [..] of  longint=(,,,,,,,,,,,,,,);
var x:longint;
begin
while true do
begin
readln(x);
if x= then halt;
writeln(Joseph[x]);
end;
end.

[POJ1012]Joseph的更多相关文章

  1. poj1012.Joseph(数学推论)

    Joseph Time Limit: 1 Sec  Memory Limit: 64 MB Submit: 493  Solved: 311 Description The Joseph's prob ...

  2. 【poj1012】 Joseph

    http://poj.org/problem?id=1012 (题目链接) 半年前的考试题..任然清晰的记得那次差10分就AK... 题意 约瑟夫环,有前k个好人,后k个坏人,要求使得后k个坏人先死的 ...

  3. Joseph(JAVA版)

    package Joseph;//约瑟夫环,m个人围成一圈.从第K个人开始报数,报道m数时,那个人出列,以此得到出列序列//例如1,2,3,4.从2开始报数,报到3剔除,顺序为4,3,1,2publi ...

  4. Hdu 1443 Joseph

    Joseph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  5. 一道模拟题:改进的Joseph环

    题目:改进的Joseph环.一圈人报数,报数上限依次为3,7,11,19,循环进行,直到所有人出列完毕. 思路:双向循环链表模拟. 代码: #include <cstdio> #inclu ...

  6. POJ 1012 Joseph

    Joseph Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 44650   Accepted: 16837 Descript ...

  7. poj1012

    Joseph Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 52097   Accepted: 19838 Descript ...

  8. hdu 1443 Joseph (约瑟夫环)

    Joseph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  9. UVa 1363 (数论 数列求和) Joseph's Problem

    题意: 给出n, k,求 分析: 假设,则k mod (i+1) = k - (i+1)*p = k - i*p - p = k mod i - p 则对于某个区间,i∈[l, r],k/i的整数部分 ...

随机推荐

  1. php 导出excel表格

    方式一:使用PHPExcel类库 //引入PHPExcel库文件(路径根据自己情况)include './phpexcel/Classes/PHPExcel.php'; $excel = new PH ...

  2. 【BZOJ】1012: [JSOI2008]最大数maxnumber 树状数组求区间最值

    题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1012 题意:维护一个数列,开始时没有数值,之后会有两种操作, Q L :查询数列末 ...

  3. 2016041601 - linux上安装maven

    在linux系统中安装maven,个人目前使用ubuntu15.1系统. 要想使用maven,前提条件必须配置好java. 1.检查java信息. 命令:echo $JAVA_HOME 和java - ...

  4. POJ 3254 压缩状态DP

    题意:一个矩形网格,可以填0或1, 但有些位置什么数都不能填,要求相邻两个不同时为1,有多少种填法.矩形大小最大 12*12. 压缩状态DP大多有一个可行的state的范围,先求出这个state范围, ...

  5. 关于Windows环境下安装Android模拟器Genymotion的教程

    打开Genymotion的官网www.genymotion.com,点击按钮"get genymotion", 选择"Free"下的"DOWNLOAD ...

  6. JS数据类型&&typeof&&其他

    1. 5种基本数据类型: 1. String 2. Number 3. Boolean 4. Undefined 5. Null 2. 1种复杂数据类型:Object 3. 检测变量的数据类型:typ ...

  7. PIXLCLOUND

    http://pixlcloud.com/main/career/ https://www.recordedfuture.com/siem-threat-intelligence-part-1/

  8. android ExpandableListActivity的使用

    package com.example.keKuoZhanLieBiao; import android.app.ExpandableListActivity; import android.os.B ...

  9. 9. MonoBehaviour.StartCoroutine 开始协同程序

    function StartCoroutine (routine : IEnumerator) : Coroutine 描述:开始协同程序. 一个协同程序在执行过程中,可以在任意位置使用yield语句 ...

  10. asp.net 框架初接触

    1. 在web层的Default.aspx里只有最基本的UI代码 2. 在web层的Default.aspx.cs里第一行创建一个用户业务对象UserBO (注意添加引用,下同) protected ...