bzoj 3143: [Hnoi2013]游走 高斯消元
3143: [Hnoi2013]游走
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 1026 Solved: 448
[Submit][Status]
Description
一个无向连通图,顶点从1编号到N,边从1编号到M。
小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数。当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和。
现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小。
Input
第一行是正整数N和M,分别表示该图的顶点数 和边数,接下来M行每行是整数u,v(1≤u,v≤N),表示顶点u与顶点v之间存在一条边。 输入保证30%的数据满足N≤10,100%的数据满足2≤N≤500且是一个无向简单连通图。
Output
仅包含一个实数,表示最小的期望值,保留3位小数。
Sample Input
2 3
1 2
1 3
Sample Output
HINT
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 1000
#define MAXV MAXN
#define MAXE 500000
#define abs(x) ((x)>0?(x):(-(x)))
typedef long double real;
struct Edge
{
int np;
Edge *next;
}E[MAXE],*V[MAXV];
int tope=-;
void addedge(int x,int y)
{
E[++tope].next=V[x];
E[tope].np=y;
V[x]=&E[tope];
}
int deg[MAXN];
int q[MAXN];
real pp[MAXN];
real a[MAXN][MAXN];
int n,m;
struct edge
{
int x,y;
real p;
}w[MAXE];
bool cmp_p(edge e1,edge e2)
{
return e1.p>e2.p;
}
void pm()
{
for (int i=;i<n;i++)
{
for (int j=;j<=n;j++)
{
printf("%.2Lf ",a[i][j]);
}
printf("\n");
}
printf("\n");
}
int main()
{
freopen("input.txt","r",stdin);
int i,j,k,x,y,z;
scanf("%d%d",&n,&m);
for (i=;i<m;i++)
{
scanf("%d%d",&x,&y);
addedge(x,y);
addedge(y,x);
deg[x]++;deg[y]++;
w[i].x=x;w[i].y=y;
}
int now;
Edge *ne;
for (i=;i<=n-;i++)
{
now=i;
for (ne=V[now];ne;ne=ne->next)
{
if (ne->np!=n)
a[now][ne->np]=1.0/deg[ne->np];
}
a[now][now]=-;
a[now][n]=;
}
a[][n]=;
//pm();
for (i=;i<=n-;i++)
{
x=i;
for (j=i+;j<=n-;j++)
{
if (abs(a[j][i])>abs(a[x][i]))
{
x=j;
}
}
if (x!=i)
{
for (j=i;j<=n;j++)
{
swap(a[i][j],a[x][j]);
}
}
if (!a[i][i])continue;
for (j=i+;j<=n-;j++)
{
real t=a[j][i]/a[i][i];
for (k=i;k<=n;k++)
{
a[j][k]-=t*a[i][k];
}
}
//pm();
}
pp[n]=;
for (i=n-;i>=;i--)
{
for (j=i+;j<=n;j++)
{
pp[i]-=pp[j]*a[i][j];
}
pp[i]/=a[i][i];
}
pp[n]=;
/* for (i=1;i<=n;i++)
printf("%.2Lf ",pp[i]);
printf("\n");*/
for (i=;i<m;i++)
{
w[i].p=pp[w[i].x]/deg[w[i].x] + pp[w[i].y]/deg[w[i].y];
}
sort(w,w+m,cmp_p);
int head=-,tail=-;
real ans=;
for (i=;i<m;i++)
{
ans+=(i+)*w[i].p;
}
printf("%.3Lf",ans);
}
bzoj 3143: [Hnoi2013]游走 高斯消元的更多相关文章
- BZOJ 3143 HNOI2013 游走 高斯消元 期望
这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...
- Luogu3232 HNOI2013 游走 高斯消元、期望、贪心
传送门 这种无向图上从一个点乱走到另一个点的期望题目好几道与高斯消元有关 首先一个显然的贪心:期望经过次数越多,分配到的权值就要越小. 设$du_i$表示$i$的度,$f_i$表示点$i$的期望经过次 ...
- BZOJ3143:[HNOI2013]游走(高斯消元)
Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...
- 【BZOJ-3143】游走 高斯消元 + 概率期望
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2264 Solved: 987[Submit][Status] ...
- BZOJ 3143: [Hnoi2013]游走 概率与期望+高斯消元
Description 一个无向连通图,顶点从1编号到N,边从1编号到M.小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获 ...
- BZOJ.3143.[HNOI2013]游走(概率 期望 高斯消元)
题目链接 参考 远航之曲 把走每条边的概率乘上分配的标号就是它的期望,所以我们肯定是把大的编号分配给走的概率最低的边. 我们只要计算出经过所有点的概率,就可以得出经过一条边(\(u->v\))的 ...
- bzoj 3143 [Hnoi2013]游走 期望dp+高斯消元
[Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3394 Solved: 1493[Submit][Status][Disc ...
- bzoj 3143 [Hnoi2013]游走【高斯消元+dp】
参考:http://blog.csdn.net/vmurder/article/details/44542575 和2337有点像 设点u的经过期望(还是概率啊我也分不清,以下都分不清)为\( x[u ...
- [HNOI2013][BZOJ3143] 游走 - 高斯消元
题目描述 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边 ...
随机推荐
- Ubuntu vim+ ctags(包含系统函数) + taglist 配置 分类: vim ubuntu 2015-06-09 18:19 195人阅读 评论(0) 收藏
阅读大型代码,我们经常需要打开很多的代码文件,搜索各种定义.windows下用惯了ide的朋友,转战Linux的时候可能会觉得很难受,找不到合适的阅读工具.其实万能的vim就可以实现.下面介绍一下vi ...
- hdu 3586 Information Disturbing(树形dp + 二分)
本文出自 http://blog.csdn.net/shuangde800 题目链接: hdu-3586 题意 给一棵n个节点的树,节点编号为1-n,根节点为1.每条边有权值,砍掉一条边要花费 ...
- InstallShield12豪华版破解版下载|InstallShield下载|软件打包工具
InstallShield 12 豪华版+破解版 下载 下载速度:220kb/s InstallShield 12为软件发行方提供率先的安装程序解决方式,可以制作强大可靠的Windows Instal ...
- Android的配置界面PreferenceActivity
我想大家对于android的系统配置界面应该不会陌生吧,即便陌生,那么下面的界面应该似曾相识吧,假若还是不认识,那么也没有关系,我们这一节主要就是介绍并讲解android 中系统配置界面的使用,相信大 ...
- cookie记录用户名和密码
getAttribute和getParameter的区别: request.getAttribute():是request时设置的变量的值,用request.setAttribute("na ...
- 对RecycleView的多种item布局的封装
本文是借鉴bingoogolapple写得BGAAdapter-Android而产生的,对此表示感谢. 效果 1.Adapter的使用 1.继承BaseAdapter 这里是我的adapter pub ...
- python 面向对象简单理解
面向对象: 是一种程序设计范型 作用: 提高软件的重用性和灵活性,扩展性 世界万物一切皆为对象,对象即是指由特定状态,特征,行为的实体 知识点一: 代码的重用 举个栗子 比如小月月有了一个女朋友1 ...
- 路E施工管理ERP系统
前 景 目前公路工程由于点多.线长.面广.周期久.投资大等原因,管理很难到位,施工过程中存在着大量问题: 规章制度欠缺或不健全,即便是有好的规章制度,在施工过程中也往往形同虚设,不能与现场施 ...
- 文件上传利器SWFUpload使用指南
这里就不再介绍什么是SWFUpload啦,简单为大家写一个简单关于SWFUpload的Demo. 1.把SWFUpload 相关的文件引用进来 2.创建upload.aspx页面(页面名称可自定义), ...
- What's DB2 模式?
近期负责一个银行方面的项目,需要用到DB2实现多数据库版本切换.初步接触DB2,对于它的管理工具(IBM DATA STUDIO)虽然与ORACLE\MSSQL大同小异,但还是有些东西不一样的.比如什 ...