机器学习中数据读取是很重要的一个环节,TensorFlow也提供了很多实用的方法,为了避免以后时间久了又忘记,所以写下笔记以备日后查看。

最普通的正常情况

首先我们看看最普通的情况:

# 创建0-10的数据集,每个batch取个数。
dataset = tf.data.Dataset.range(10).batch(6)
iterator = dataset.make_one_shot_iterator()
next_element = iterator.get_next() with tf.Session() as sess:
for i in range(2):
value = sess.run(next_element)
print(value)

输出结果

[0 1 2 3 4 5]
[6 7 8 9]

由结果我们可以知道TensorFlow能很好地帮我们自动处理最后一个batch的数据。

datasets.batch(batch_size)与迭代次数的关系

但是如果上面for循环次数超过2会怎么样呢?也就是说如果 循环次数*批数量 > 数据集数量 会怎么样?我们试试看:

dataset = tf.data.Dataset.range(10).batch(6)
iterator = dataset.make_one_shot_iterator()
next_element = iterator.get_next() with tf.Session() as sess:
>>==for i in range(3):==<<
value = sess.run(next_element)
print(value)

输出结果

[0 1 2 3 4 5]
[6 7 8 9]
---------------------------------------------------------------------------
OutOfRangeError Traceback (most recent call last)
D:\Continuum\anaconda3\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args)
1277 try: ...
...省略若干信息...
... OutOfRangeError (see above for traceback): End of sequence
[[Node: IteratorGetNext_64 = IteratorGetNext[output_shapes=[[?]], output_types=[DT_INT64], _device="/job:localhost/replica:0/task:0/device:CPU:0"](OneShotIterator_28)]]

可以知道超过范围了,所以报错了。

datasets.repeat()

为了解决上述问题,repeat方法登场。还是直接看例子吧:

dataset = tf.data.Dataset.range(10).batch(6)
dataset = dataset.repeat(2)
iterator = dataset.make_one_shot_iterator()
next_element = iterator.get_next() with tf.Session() as sess:
for i in range(4):
value = sess.run(next_element)
print(value)

输出结果

[0 1 2 3 4 5]
[6 7 8 9]
[0 1 2 3 4 5]
[6 7 8 9]

可以知道repeat其实就是将数据集重复了指定次数,上面代码将数据集重复了2次,所以这次即使for循环次数是4也依旧能正常读取数据,并且都能完整把数据读取出来。同理,如果把for循环次数设置为大于4,那么也还是会报错,这么一来,我每次还得算repeat的次数,岂不是很心累?所以更简便的办法就是对repeat方法不设置重复次数,效果见如下:

dataset = tf.data.Dataset.range(10).batch(6)
dataset = dataset.repeat()
iterator = dataset.make_one_shot_iterator()
next_element = iterator.get_next() with tf.Session() as sess:
for i in range(6):
value = sess.run(next_element)
print(value)

输出结果:

[0 1 2 3 4 5]
[6 7 8 9]
[0 1 2 3 4 5]
[6 7 8 9]
[0 1 2 3 4 5]
[6 7 8 9]

此时无论for循环多少次都不怕啦~~

datasets.shuffle(buffer_size)

仔细看可以知道上面所有输出结果都是有序的,这在机器学习中用来训练模型是浪费资源且没有意义的,所以我们需要将数据打乱,这样每批次训练的时候所用到的数据集是不一样的,这样啊可以提高模型训练效果。

另外shuffle前需要设置buffer_size:

  • 不设置会报错,
  • buffer_size=1:不打乱顺序,既保持原序
  • buffer_size越大,打乱程度越大,演示效果见如下代码:
dataset = tf.data.Dataset.range(10).shuffle(2).batch(6)
dataset = dataset.repeat(2)
iterator = dataset.make_one_shot_iterator()
next_element = iterator.get_next() with tf.Session() as sess:
for i in range(4):
value = sess.run(next_element)
print(value)

输出结果:

[1 0 2 4 3 5]
[7 8 9 6]
[1 2 3 4 0 6]
[7 8 9 5]

注意:shuffle的顺序很重要,一般建议是最开始执行shuffle操作,因为如果是先执行batch操作的话,那么此时就只是对batch进行shuffle,而batch里面的数据顺序依旧是有序的,那么随机程度会减弱。不信你看:

dataset = tf.data.Dataset.range(10).batch(6).shuffle(10)
dataset = dataset.repeat(2)
iterator = dataset.make_one_shot_iterator()
next_element = iterator.get_next() with tf.Session() as sess:
for i in range(4):
value = sess.run(next_element)
print(value)

输出结果:

[0 1 2 3 4 5]
[6 7 8 9]
[0 1 2 3 4 5]
[6 7 8 9]

MARSGGBO♥原创







2018-8-5

Tensorflow datasets.shuffle repeat batch方法的更多相关文章

  1. TensorFlow高效读取数据的方法——TFRecord的学习

    关于TensorFlow读取数据,官网给出了三种方法: 供给数据(Feeding):在TensorFlow程序运行的每一步,让python代码来供给数据. 从文件读取数据:在TensorFlow图的起 ...

  2. 【tf.keras】tensorflow datasets,tfds

    一些最常用的数据集如 MNIST.Fashion MNIST.cifar10/100 在 tf.keras.datasets 中就能找到,但对于其它也常用的数据集如 SVHN.Caltech101,t ...

  3. TensorFlow模型保存和加载方法

    TensorFlow模型保存和加载方法 模型保存 import tensorflow as tf w1 = tf.Variable(tf.constant(2.0, shape=[1]), name= ...

  4. TensorFlow指定CPU和GPU方法

    TensorFlow指定CPU和GPU方法 TensorFlow 支持 CPU 和 GPU.它也支持分布式计算.可以在一个或多个计算机系统的多个设备上使用 TensorFlow. TensorFlow ...

  5. [TensorFlow] Introduction to TensorFlow Datasets and Estimators

    Datasets and Estimators are two key TensorFlow features you should use: Datasets: The best practice ...

  6. Tensorflow高效读取数据的方法

    最新上传的mcnn中有完整的数据读写示例,可以参考. 关于Tensorflow读取数据,官网给出了三种方法: 供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码 ...

  7. TensorFlow加载图片的方法

    方法一:直接使用tensorflow提供的函数image = tf.gfile.FastGFile('PATH')来读取一副图片: import matplotlib.pyplot as plt; i ...

  8. tensorflow中的参数初始化方法

    1. 初始化为常量 tf中使用tf.constant_initializer(value)类生成一个初始值为常量value的tensor对象. constant_initializer类的构造函数定义 ...

  9. TensorFlow 常见错误与解决方法——长期不定时更新

    1. TypeError: Cannot interpret feed_dict key as Tensor: Can not convert a builtin_function_or_method ...

随机推荐

  1. BZOJ1014 JSOI2008火星人(splay+哈希)

    splay维护哈希值即可. #include<iostream> #include<cstdio> #include<cmath> #include<cstd ...

  2. Redundant Paths POJ - 3177(边—双连通分量)

    题意: 在图中加边 看最少能通过加多少条边把 图变成边—双连通分量 解析: 先做一次dfs,不同的连通分量的low是不同的  注意重边 缩点 统计度为1的点  那么需要加的边为(ret+1)/2 #i ...

  3. js的==和===练习

    今天检查了一下JS的== 和===的区别 如下: 表达式                              值 1==true  true 1===true  false 0==false t ...

  4. json序列化 & 反序列化

    json序列化: json的dumps方法可以将json格式数据序列为python的相关数据类型,比如str,常用于打印,另外,在序列化时,中文汉字被转换为unicode编码,在dumps函数中添加参 ...

  5. nowcoder172A 中位数 (二分答案)

    二分一下答案,假设是x. 我们把大于x的看成1,小于x的看成-1,等于x的看成0 那某个区间的和如果是正的,就说明这个区间中位数大于x:如果是0,就等于x:如果是负的,就小于x: 这样的话,做一个前缀 ...

  6. bzoj5281/luogu4377 Talent Show (01分数规划+背包dp)

    就是01分数规划的思路,只不过当把w[i]-r*t[i]>0的选完以后如果w值还没达到要求,那就再01背包dp一下就好了(dp时w值>W的时候就存在W里就不会爆内存了). (跑得很慢..大 ...

  7. qsort代码(pascal/c/c++)与思想及扩展(随机化,TopK)

    1.快速排序思想:从一堆数A中找到一个数x,然后把这堆数x分成两堆B,C,B堆的数小于(或小于等于)该数,放在左边,C堆的数大于(或大于等于)该数,放在右边,有可能把该数x单独分开,放在中间.然后对小 ...

  8. 多个 ng-app 中 Controllers & Services 之间的通信

    原文发布在个人独立博客上,链接:http://pengisgood.github.io/2016/01/31/communication-between-multiple-angular-apps/ ...

  9. vs widows服务的发布

    1.在service1.cs里空白处点击右键,弹出菜单选择 添加安装程序 2.自动生成ProjectInstaller.cs文件后 可在InitializeComponent()方法里自定义服务名称 ...

  10. (Set) 人见人爱A-B HDU2034

    人见人爱A-B 链接:http://acm.hdu.edu.cn/showproblem.php?pid=2034 JAVA代码借鉴链接:https://blog.csdn.net/superbeau ...