前言

蒟蒻代码惨遭卡常,根本跑不过

前置芝士——单位根反演

单位根有这样的性质:

\[\frac{1}{n}\sum_{i=0}^{n-1}\omega_{n}^{ki}=\left[n|k\right]
\]

所以可以得出单位根反演的式子

如果有\(f(x)=\sum_{i=0}a_ix^i\),就可以推出

\[\sum_{i=0}^na_i\left[d|i\right]=\frac{1}{d}\sum_{p=0}^{d-1}f(\omega_d^p)
\]

证明可以把上面的式子代入,然后交换和号

思路

这道题要求的东西是这样的

\[\sum_{i=0}^3a_i\sum_{j=0}^n\left(\begin{matrix}n\\j\end{matrix}\right)s^j\left[j\%4=i\right]
\]

写出\(\sum_{j=0}^n\left(\begin{matrix}n\\j\end{matrix}\right)s^j\)的生成函数,由二项式定理得到是\((sx+1)^n\)

不妨设i=0

则要求

\[\sum_{j=0}^n\left(\begin{matrix}n\\j\end{matrix}\right)s^j\left[4|j\right]
\]

直接套公式

原式等于

\[\frac{1}{4}\sum_{p=0}^3f(\omega_4^p)
\]

对于i等于1,2,3,相当于原式向右边“移动”了1,2,3个位置

乘以自变量的对应倍即可

代码

蒟蒻的代码不知道为什么跑的辣么慢,只有60pts

#include <cstdio>
#include <algorithm>
#include <cstring>
#define int long long
using namespace std;
int T,a[4],s,n,MOD=998244353,W[5]={1,911660635,998244352,86583718},inv=748683265;
int pow(int a,int b){
int ans=1;
while(b){
if(b&1)
ans=(ans*a)%MOD;
a=(a*a)%MOD;
b>>=1;
}
return ans;
}
signed main(){
scanf("%lld",&T);
while(T--){
scanf("%lld %lld %lld %lld %lld %lld",&n,&s,&a[0],&a[1],&a[2],&a[3]);
int ans=0;
for(int i=0;i<4;i++){
int mid=0;
for(int j=0;j<4;j++)
mid=(mid+pow((s*W[j]%MOD+1%MOD)%MOD,n)*pow(W[i*j%4],MOD-2)%MOD)%MOD;
ans=(ans+a[i]*mid%MOD*inv%MOD)%MOD;
}
printf("%lld\n",ans);
}
return 0;
}

LOJ 6485 LJJ学多项式的更多相关文章

  1. loj #6485. LJJ 学二项式定理 (模板qwq)

    $ \color{#0066ff}{ 题目描述 }$ LJJ 学完了二项式定理,发现这太简单了,于是他将二项式定理等号右边的式子修改了一下,代入了一定的值,并算出了答案. 但人口算毕竟会失误,他请来了 ...

  2. LOJ #6485 LJJ 学二项式定理

    QwQ LOJ #6485 题意 求题面中那个算式 题解 墙上暴利 设$ f(x)=(sx+1)^n$ 假设求出了生成函数$ f$的各项系数显然可以算出答案 因为模$ 4$的缘故只要对于每个余数算出次 ...

  3. LOJ 6485 LJJ 学二项式定理——单位根反演

    题目:https://loj.ac/problem/6485 \( \sum\limits_{k=0}^{3}\sum\limits_{i=0}^{n}C_{n}^{i}s^{i}a_{k}[4|(i ...

  4. loj 6485 LJJ学二项式定理 —— 单位根反演

    题目:https://loj.ac/problem/6485 先把 \( a_{i mod 4} \) 处理掉,其实就是 \( \sum\limits_{i=0}^{3} a_{i} \sum\lim ...

  5. loj#6485. LJJ 学二项式定理(单位根反演)

    题面 传送门 题解 首先你要知道一个叫做单位根反演的东西 \[{1\over k}\sum_{i=0}^{k-1}\omega^{in}_k=[k|n]\] 直接用等比数列求和就可以证明了 而且在模\ ...

  6. loj #6485. LJJ 学二项式定理 单位根反演

    新学的黑科技,感觉好nb ~ #include <bits/stdc++.h> #define ll long long #define setIO(s) freopen(s". ...

  7. [LOJ 6485]LJJ学二项式定理(单位根反演)

    也许更好的阅读体验 \(\mathcal{Description}\) 原题链接 \(T\)组询问,每次给\(n,s,a_0,a_1,a_2,a_3\)求 \(\begin{aligned}\left ...

  8. 【LOJ#6485】LJJ 学二项式定理(单位根反演)

    [LOJ#6485]LJJ 学二项式定理(单位根反演) 题面 LOJ 题解 显然对于\(a0,a1,a2,a3\)分开算答案. 这里以\(a0\)为例 \[\begin{aligned} Ans&am ...

  9. LOJ6485 LJJ 学二项式定理 解题报告

    LJJ 学二项式定理 题意 \(T\)组数据,每组给定\(n,s,a_0,a_1,a_2,a_3\),求 \[ \sum_{i=0}^n \binom{n}{i}s^ia_{i\bmod 4} \] ...

随机推荐

  1. C. Primes or Palindromes?

    prime numbers non greater than n is about . We can also found the amount of palindrome numbers with ...

  2. scrapy:get cookie from response

    scrapy shell fetch('your_url') response.headers.getlist("Set-Cookie")https://stackoverflow ...

  3. 20155228 2016-2017-2 《Java程序设计》第1周学习总结

    20155228 2016-2017-2 <Java程序设计>第1周学习总结 教材学习内容总结 这部分内容是以教材为基础,根据个人的理解来描述的,有的地方的理解和表述可能不规范甚至不正确, ...

  4. 使用函数式编程消除重复无聊的foreach代码(Scala示例)

    摘要:使用Scala语言为例,展示函数式编程消除重复无聊的foreach代码. 难度:中级 概述 大多数开发者在开发生涯里,会面对大量业务代码.而这些业务代码中,会发现有大量重复无聊的 foreach ...

  5. 【转】SQLyog SSH 密钥登陆认证提示: No supported authentication methods available 解决方法

    问题背景: 问题原因: SQLyog不支持非标准的的私钥格式 解决方案: 使用puttyGen重新导入原来的私钥,然后重新保存成PPK证书文件,最后用SQLyog加载该PPK文件即可. 效果截图: 原 ...

  6. 初探AngularJs框架(二)

    一.创建Components组件 直接使用AngularCLI即可很方便的创建component组件,使用如下指令: ng g component components/news 这样就会在compo ...

  7. 关于js闭包之小问题大错误

    闭包是 JavaScript 开发的一个关键方面:匿名函数可以访问父级作用域的变量. 如果闭包的作用域中保存着一个 HTML 元素,则该元素无法被销毁.(下面代码来自高程) 刚看到一个关于闭包自己没注 ...

  8. JustOJ1500: 蛇行矩阵

    题目链接:https://oj.ismdeep.com/problem?id=1500 题目描述 蛇形矩阵是由1开始的自然数依次排列成的一个矩阵上三角形. 输入 本题有多组数据,每组数据由一个正整数N ...

  9. VI编辑器常用命令

    Linux下的文本编辑器有很多种,vi 是最常用的,也是各版本Linux的标配.注意,vi 仅仅是一个文本编辑器,可以给字符着色,可以自动补全,但是不像 Windows 下的 word 有排版功能. ...

  10. 安装DotNetCore.1.0.0-VS2015Tools.Preview2一直失败,如何解?

    首先要说明的一点是,本地的VS2015的环境已经安装完成,而且vs2015.3也已经更新完成了,这个环境应该是没啥问题.但是安装.DotNetCore.1.0.0-VS2015Tools.Previe ...