Problem J: Justified Jungle

Time limit: 6 s Memory l

imit: 512 MiB

As you probably know, a tree is a graph consisting of n nodes and n−1 undirected edges in which any two nodes are connected by exactly one path. A forest is a graph consisting of one or more trees. In other words, a graph is a forest if every connected component is a tree. A forest is justified if all connected components have the same number of nodes. Given a tree G consisting of n nodes, find all positive integers k such that a justified forest can be obtained by erasing exactly k edges from G. Note that erasing an edge never erases any nodes. In particular when we erase all n−1 edges from G, we obtain a justified forest consisting of n one-node components.
Input The first line contains an integer n (2≤ n ≤1000000) — the number of nodes in G. The k-th of the following n−1 lines contains two different integers ak and bk (1≤ ak,bk ≤n) — the endpoints of the k-th edge.
Output
The first line should contain all wanted integers k, in increasing order.
Example
input
8 1 2 2 3 1 4 4 5 6 7 8 3 7 3
output
1 3 7
Figures depict justified forests obtained by erasing 1, 3 and 7 edges from the tree in the example input.

 // 题目大意:删去k条边,树变为相等个点的连通分量,求所有正整数k。

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define maxn 1000006
int head[maxn],cnt,siz[maxn],v[maxn],n;
struct edge{
int to,nxt;
}e[maxn<<];
void add_edge(int u,int v){
e[cnt].to=v;
e[cnt].nxt=head[u];
head[u]=cnt++;
}
void dfs(int u,int fa){
siz[u]=;
for(int i=head[u];i!=-;i=e[i].nxt){
int v=e[i].to;
if(v==fa) continue;
dfs(v,u);
siz[u]+=siz[v];
}
v[siz[u]]++;
}
bool check(int x){
x++;
if(n%x) return ;
int w=n/x,sum=;
for(int i=w;i<=n;i+=w) sum+=v[i];
return sum==x;
}
int main(){
memset(head,-,sizeof head);
scanf("%d",&n);
for(int i=;i<n-;i++){
int a,b;
scanf("%d%d",&a,&b);
add_edge(a,b);
add_edge(b,a);
}
dfs(,-);
for(int i=;i<=n;i++){
if(check(i)) printf("%d ",i);
}
return ;
}

Justified Jungle的更多相关文章

  1. uva live 6190 Beautiful Spacing (二分法+dp试 基于优化的独特性质)

    I - Beautiful Spacing Time Limit:8000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu ...

  2. poj 1251 Jungle Roads (最小生成树)

    poj   1251  Jungle Roads  (最小生成树) Link: http://poj.org/problem?id=1251 Jungle Roads Time Limit: 1000 ...

  3. Jungle Roads[HDU1301]

    Jungle Roads Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tota ...

  4. Jungle Roads

    Description The Head Elder of the tropical island of Lagrishan has a problem. A burst of foreign aid ...

  5. EDdb 是ED数据

    eddb  是ED数据统计汇总软件的简称,用于统计汇总企事业单位的各类信息数据. 采用Excel界面,操作简单. 对各类信息数据,均可以自定义数据格式,通过internet联网,收集各类信息数据,并通 ...

  6. POJ 1251 Jungle Roads (prim)

    D - Jungle Roads Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Su ...

  7. ios CoreBluetooth 警告 is being dealloc'ed while pending connection

    ios CoreBluetooth 警告 is being dealloc'ed while pending connection CoreBluetooth[WARNING] <CBPerip ...

  8. ed编辑器使用

    evilxr@IdeaPad:/tmp$ ed aa.c 0 a enter another words hello nice www.evilxr.com . w aa.c 46 q a 表示添加内 ...

  9. Linux ed命令

    $ ed              <- 激活 ed 命令  a                 <- 告诉 ed 我要编辑新文件  My name is Titan. <- 输入第 ...

随机推荐

  1. python截取字符串

    str = ‘0123456789’ print str[0:3] #截取第一位到第三位的字符 print str[:] #截取字符串的全部字符 print str[6:] #截取第七个字符到结尾 p ...

  2. windows中mysql5.7保存emoji表情

    1.找到my.ini文件,修改一下配置: [client] default-character-set=utf8mb4 [mysqld] character-set-client-handshake ...

  3. learning ddr input clock frequency change condition

  4. UVa 10859 - Placing Lampposts 树形DP 难度: 2

    题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...

  5. 比较不错的几款开源的WPF Charts报表控件

    UWP Community Toolkit 1. ModernUIChart Code: http://modernuicharts.codeplex.com/ Available Charts Co ...

  6. vs2015 产品密钥

    一.破解秘钥 企业版    HM6NR-QXX7C-DFW2Y-8B82K-WTYJV 专业版    HMGNV-WCYXV-X7G9W-YCX63-B98R2 二.破解步骤 1.安装vs2015 2 ...

  7. Model1与Model2

    Model1与Model2开发模式的介绍及区别 转载 浅析Java开发中的Model1和Model2

  8. 关于执行findbugs,checkstyle,jacoco插件检测代码,GitHook的脚本编写

    Git钩子的作用: (pre-commit ) 在用户执行 git commit -m "xxx" 命令之前,先执行pre-commit文件中的脚本命令 在pre-commit文件 ...

  9. 控制台程序读取WIKI形式的TXT文件并一表格的形式显示在Word中

    'Imports System.Collections.Generic 'Imports System.Text 'Imports System.IO 'Imports office = Micros ...

  10. elk之kibana

    环境: centos7 jdk8 参考: https://www.elastic.co/guide/en/elasticsearch/reference/current/rpm.htmlhttp:// ...