“ 这篇文章,给大家聊聊一个百万级并发的中间件系统的内核代码里的锁性能优化。

  很多同学都对Java并发编程很感兴趣,学习了很多相关的技术和知识。比如volatile、Atomic、synchronized底层、读写锁、AQS、并发包下的集合类、线程池,等等。

  1、大部分人对Java并发仍停留在理论阶段

  很多同学对Java并发编程的知识,可能看了很多的书,也通过不少视频课程进行了学习。

  但是,大部分人可能还是停留在理论的底层,主要是了解理论,基本对并发相关的技术很少实践和使用,更很少做过复杂的中间件系统。

  实际上,真正把这些技术落地到中间件系统开发中去实践的时候,是会遇到大量的问题,需要对并发相关技术的底层有深入的理解和掌握。

  然后,结合自己实际的业务场景来进行对应的技术优化、机制优化,才能实现最好的效果。

  因此,本文将从笔者曾经带过的一个高并发中间件项目的内核机制出发,来看看一个实际的场景中遇到的并发相关的问题。

  同时,我们也将一步步通过对应的伪代码演进,来分析其背后涉及到的并发的性能优化思想和实践,最后来看看优化之后的效果。

  2、中间件系统的内核机制:双缓冲机制

  这个中间件项目整体就不做阐述了,因为涉及核心项目问题。我们仅仅拿其中涉及到的一个内核机制以及对应的场景来给大家做一下说明。

  其实这个例子是大量的开源中间件系统、大数据系统中都有涉及到的一个场景,就是:核心数据写磁盘文件。

  比如,大数据领域里的hadoop、hbase、elasitcsearch,Java中间件领域里的redis、mq,这些都会涉及到核心数据写磁盘文件的问题。

  而很多大型互联网公司自研的中年间系统,同样也会有这个场景。只不过不同的中间件系统,他的作用和目标是不一样的,所以在核心数据写磁盘文件的机制设计上,是有一些区别的。

  那么我们公司自研的中间件项目,简单来说,需要实现的一个效果是:开辟两块内存空间,也就是经典的内存双缓冲机制。

  然后核心数据进来全部写第一块缓冲区,写满了之后,由一个线程进行那块缓冲区的数据批量刷到磁盘文件的工作,其他线程同时可以继续写另外一块缓冲区。

  我们想要实现的就是这样的一个效果。这样的话,一块缓冲区刷磁盘的同时,另外一块缓冲区可以接受其他线程的写入,两不耽误。核心数据写入是不会断的,可以持续不断的写入这个中间件系统中。

  我们来看看下面的那张图,也来了解一下这个场景。

  

  如上图,首先是很多线程需要写缓冲区1,然后是缓冲区1写满之后,就会由写满的那个线程把缓冲区1的数据刷入磁盘文件,其他线程继续写缓冲区2。

  这样,数据批量刷磁盘和持续写内存缓冲,两个事儿就不会耽误了,这是中间件系统设计中极为常用的一个机制,大家看下面的图。

  

  3、百万并发的技术挑战

  先给大家说一下这个中间件系统的背景:这是一个服务某个特殊场景下的中间件系统,整体是集群部署。

  然后每个实例部署的都是高配置机器,定位是单机承载并发达到万级甚至十万级,整体集群足以支撑百万级并发,因此对单机的写入性能和吞吐要求极为高。

  在超高并发的要求之下,上图中的那个内核机制的设计就显得尤为重要了。弄的不好,就容易导致写入并发性能过差,达不到上述的要求。

  此外在这里多提一句,类似的这种机制在很多其他的系统里都有涉及。

  只不过不同的是,那篇文章是用这个机制来做MQ集群整体故障时的容灾降级机制,跟本文的高并发中间件系统还有点不太一样,所以在设计上考虑的一些细节也是不同的。

  而且,之前那篇文章的主题是讲这种内存双缓冲机制的一个线上问题:瞬时超高并发下的系统卡死问题。

  4、内存数据写入的锁机制以及串行化问题

  首先我们先考虑第一个问题,你多个线程会并发写同一块内存缓冲,这个肯定有问题啊!

  因为内存共享数据并发写入的时候,必须是要加锁的,否则必然会有并发安全问题,导致内存数据错乱。

  所以在这里,我们写了下面的伪代码,先考虑一下线程如何写入内存缓冲。

  

  好了,这行代码弄好之后,对应着下面的这幅图,大家看一下。

  

  看到这里,就遇到了Java并发的第一个性能问题了,你要知道高并发场景下,大量线程会并发写内存的,你要是直接这样加一个锁,必然会导致所有线程都是串行化。

  即一个线程加锁,写数据,然后释放锁。接着下一个线程干同样的事情。这种串行化必然导致系统整体的并发性能和吞吐量会大幅度降低的。

  5、内存缓冲分片机制+分段枷锁机制

  因此在这里必须要对内存双缓冲机制引入分段加锁机制,也就是将内存缓冲切分为多个分片,每个内存缓冲分片就对应一个锁。

  这样的话,你完全可以根据自己的系统压测结果,调整内存分片数量,提升锁的数量,进而允许大量线程高并发写入内存。

  我们看下面的伪代码,对这块就实现了内存缓冲分片机制:

  

  好!我们再来看看,目前为止的图是什么样子的:

  

  这里因为每个线程仅仅就是加锁,写内存,然后释放锁。

  所以,每个线程持有锁的时间是很短很短的,单个内存分片的并发写入经过压测,达到每秒几百甚至上千是没问题的,因此线上系统我们是单机开辟几十个到上百个内存缓冲分片的。

  经过压测,这足以支撑每秒数万的并发写入,如果将机器资源使用的极限,每秒十万并发也是可以支持的。

  6、缓冲区写满时的双缓冲交换

  那么当一块缓冲区写满的时候,是不是就必须要交换两块缓冲区?接着需要有一个线程来将写满的缓冲区数据刷写到磁盘文件中?

  此时的伪代码,大家考虑一下,是不是如下所示:

  

  同样,我们通过下面的图来看看这个机制的实现:

  

  7、且慢!刷写磁盘不是会导致锁持有时间过长吗?

  且慢,各位同学,如果按照上面的伪代码思路,一定会有一个问题:要是一个线程,他获取了锁,开始写内存数据。

  然后,发现内存满了,接着直接在持有锁的过程中,还去执行数据刷磁盘的操作,这样是有问题的。

  要知道,数据刷磁盘是很慢的,根据数据的多少,搞不好要几十毫秒,甚至几百毫秒。

  这样的话,岂不是一个线程会持有锁长达几十毫秒,甚至几百毫秒?

  这当然不行了,后面的线程此时都在等待获取锁然后写缓冲区2,你怎么能一直占有锁呢?

  一旦你按照这个思路来写代码,必然导致高并发场景下,一个线程持有锁上百毫秒。刷数据到磁盘的时候,后续上百个工作线程全部卡在等待锁的那个环节,啥都干不了,严重的情况下,甚至又会导致系统整体呈现卡死的状态。

  8、内存 + 磁盘并行写机制

  所以此时正确的并发优化代码,应该是发现内存缓冲区1满了,然后就交换两个缓冲区。

  接着直接就释放锁,释放锁了之后再由这个线程将数据刷入磁盘中,刷磁盘的过程是不会占用锁的,然后后续的线程都可以继续获取锁,快速写入内存,接着释放锁。

  大家先看看下面的伪代码的优化:

  

  按照上面的伪代码的优化,此时磁盘的刷写和内存的写入,完全可以并行同时进行。

  因为这里核心的要点就在于大幅度降低了锁占用的时间,这是java并发锁优化的一个非常核心的思路。

  大家看下面的图,一起来感受一下:

  

  9、为什么必须要用双缓冲机制?

  其实看到这里,大家可能或多或少都体会到了一些双缓冲机制的设计思想了,如果只用单块内存缓冲的话,那么从里面读数据刷入磁盘的过程,也需要占用锁,而此时想要获取锁写入内存缓冲的线程是获取不到锁的。

  所以假如只用单块缓冲,必然导致读内存数据,刷入磁盘的过程,长时间占用锁。进而导致大量线程卡在锁的获取上,无法获取到锁,然后无法将数据写入内存。这就是必须要在这里使用双缓冲机制的核心原因。

  10、总结

  最后做一下总结,本文从笔者团队自研的百万并发量级中间件系统的内核机制出发,给大家展示了Java并发中加锁的时候:

  如何利用双缓冲机制

  内存缓冲分片机制

  分段加锁机制

  磁盘 + 内存并行写入机制

  高并发场景下大幅度优化多线程对锁的串行化争用问题

  长时间占用锁的问题

  其实在很多开源的优秀中间件系统中,都有很多类似的Java并发优化的机制,主要就是应对高并发的场景下大幅度的提升系统的并发性能以及吞吐量。大家如果感兴趣,也可以去了解阅读一下相关的底层源码。

百万并发中间件系统的内核设计看Java并发性能优化的更多相关文章

  1. 15套java互联网架构师、高并发、集群、负载均衡、高可用、数据库设计、缓存、性能优化、大型分布式 项目实战视频教程

    * { font-family: "Microsoft YaHei" !important } h1 { color: #FF0 } 15套java架构师.集群.高可用.高可扩 展 ...

  2. 从JDK源码角度看java并发线程的中断

    线程的定义给我们提供了并发执行多个任务的方式,大多数情况下我们会让每个任务都自行执行结束,这样能保证事务的一致性,但是有时我们希望在任务执行中取消任务,使线程停止.在java中要让线程安全.快速.可靠 ...

  3. 不得不看的Java代码性能优化总结

    原文:https://blog.csdn.net/mr_smile2014/article/details/50112723 前言 代码优化,一个很重要的课题.可能有些人觉得没用,一些细小的地方有什么 ...

  4. 《Java程序性能优化》学习笔记 设计优化

    豆瓣读书:http://book.douban.com/subject/19969386/ 第一章 Java性能调优概述 1.性能的参考指标 执行时间: CPU时间: 内存分配: 磁盘吞吐量: 网络吞 ...

  5. 《Java程序性能优化》之设计优化

    豆瓣读书:http://book.douban.com/subject/19969386/ 第一章 Java性能调优概述 1.性能的参考指标 执行时间: CPU时间: 内存分配: 磁盘吞吐量: 网络吞 ...

  6. 探索并发编程(六)------Java多线程性能优化

    大家使用多线程无非是为了提高性能,但如果多线程使用不当,不但性能提升不明显,而且会使得资源消耗更大.下面列举一下可能会造成多线程性能问题的点: 死锁 过多串行化 过多锁竞争 切换上下文 内存同步 下面 ...

  7. 高并发秒杀系统--Service接口设计与实现

    [DAO编写之后的总结] DAO层    -->    接口设计 + SQL编写 DAO拼接等逻辑    -->    统一在Service层完成 [Service层的接口设计] 1.接口 ...

  8. 从JDK源码角度看java并发的公平性

    JAVA为简化开发者开发提供了很多并发的工具,包括各种同步器,有了JDK我们只要学会简单使用类API即可.但这并不意味着不需要探索其具体的实现机制,本文从JDK源码角度简单讲讲并发时线程竞争的公平性. ...

  9. 从JDK源码角度看java并发的原子性如何保证

    JDK源码中,在研究AQS框架时,会发现很多地方都使用了CAS操作,在并发实现中CAS操作必须具备原子性,而且是硬件级别的原子性,java被隔离在硬件之上,明显力不从心,这时为了能直接操作操作系统层面 ...

随机推荐

  1. Golang闭包案例分析与普通函数对比

    闭包案例 package main import ( "fmt" "strings" //记住一定引入strings包 ) //①编写一个函数makeSuffi ...

  2. Systen,IO

    private void CreateHtml(string sPath, string txt) { string currPath = @"C:\MyCodeHelper" + ...

  3. 02: CMDB设计思路

    1.1 cmdb理解   参考博客:https://www.cnblogs.com/laowenBlog/p/6825420.html   参考博客2:https://www.cnblogs.com/ ...

  4. shell脚本一键安装jdk

    直接上shell #!/bin/bash #offline jdk install ipath="/usr/local" installpath=$(cd `dirname $0` ...

  5. 2018-2019-2 《网络对抗技术》Exp3 免杀原理与实践 20165211

    目录 2018-2019-2 <网络对抗技术>Exp3 免杀原理与实践 20165211 1. 基础问题回答 (1)杀软是如何检测出恶意代码的? (2)免杀是做什么? (3)免杀的基本方法 ...

  6. Java1.7 HashMap 实现原理和源码分析

    HashMap 源码分析是面试中常考的一项,下面一篇文章讲得很好,特地转载过来. 本文转自:https://www.cnblogs.com/chengxiao/p/6059914.html 参考博客: ...

  7. 赞 ( 84 ) 微信好友 新浪微博 QQ空间 180 SSD故事会(14):怕TLC因为你不了解!【转】

    本文转载自:https://diy.pconline.com.cn/750/7501340.html [PConline 杂谈]从前,大家谈TLC色变:如今,TLC攻占SSD半壁江山.是的,这个世界就 ...

  8. Python 模块的加载顺序

    基本概念 module 模块, 一个 py 文件或以其他文件形式存在的可被导入的就是一个模块 package 包,包含有 init 文件的文件夹 relative path 相对路径,相对于某个目录的 ...

  9. POJ 1486 Sorting Slides(二分图完全匹配必须边)题解

    题意:给你n张照片的范围,n个点的坐标,问你能唯一确定那几个点属于那几张照片,例如样例中4唯一属于A,2唯一属于C,1唯一属于B,3唯一属于C 思路:进行二分图完全匹配,怎么判断唯一属于?匹配完之后删 ...

  10. What are the differences between Flyweight and Object Pool patterns?

    What are the differences between Flyweight and Object Pool patterns? They differ in the way they are ...