K-medodis与K-means比较相似,但是K-medoids和K-means是有区别的,不一样的地方在于中心点的选取,在K-means中,我们将中心点取为当前cluster中所有数据点的平均值,在 K-medoids算法中,我们将从当前cluster 中选取这样一个点——它到其他所有(当前cluster中的)点的距离之和最小——作为中心点。K-medodis算法不容易受到那些由于误差之类的原因产生的脏数据的影响,但计算量显然要比K-means要大,一般只适合小数据量。 K-medoids 主要运用到了R语言中cluster包中的pam函数

K中心点聚类


  • cluster::pam
  • fpc::pamk

cluster::pam


Usage:  pam(x, k, diss = inherits(x, "dist"), metric = "euclidean",  medoids = NULL, stand = FALSE, cluster.only = FALSE,   do.swap = TRUE,   keep.diss = !diss && !cluster.only && n < 100,   keep.data = !diss && !cluster.only,   pamonce = FALSE, trace.lev = 0)

  • x:聚类对象
  • k:  是聚类个数 ( positive integer specifying the number of clusters, less than the number of observations)

示例代码

> newiris <- iris[,-5]
> library(cluster)
> kc <- pam(x=newiris,k=3)
> #kc$clustering
> #kc[1:length(kc)]
>
> table(iris$Species, kc$clustering) 1 2 3
setosa 50 0 0
versicolor 0 48 2
virginica 0 14 36

小结:

针对K-均值算法易受极值影响这一缺点的改进算法.在原理上的差异在于选择个类别中心点时不取样本均值点,而在类别内选取到其余样本距离之和最小的样本为中心。

fpc::pamk


相比于pam函数,可以给出参考的聚类个数, 参考 kmenas 与 kmeansrun

Usage:  pamk(data,krange=2:10,criterion="asw", usepam=TRUE,   scaling=FALSE, alpha=0.001, diss=inherits(data, "dist"),    critout=FALSE, ns=10, seed=NULL, ...)

示例代码

newiris <- iris
newiris$Species <- NULL
library(fpc)
kc2 <- pamk(newiris,krang=1:5)
plot(pam(newiris, kc2$nc))

图例 

fpc包还提供了另一个展示聚类分析的函数plotcluster(),值得一提的是,数据将被投影到不同的簇中

plotcluster(newiris,kc2$cluster)

待验证:

为什么仅出现两个聚类?

参考资料:


ML: 聚类算法R包-K中心点聚类的更多相关文章

  1. ML: 聚类算法R包-层次聚类

    层次聚类 stats::hclust stats::dist    R使用dist()函数来计算距离,Usage: dist(x, method = "euclidean", di ...

  2. ML: 聚类算法R包 - 模型聚类

    模型聚类 mclust::Mclust RWeka::Cobweb mclust::Mclust EM算法也称为期望最大化算法,在是使用该算法聚类时,将数据集看作一个有隐形变量的概率模型,并实现模型最 ...

  3. ML: 聚类算法R包-模糊聚类

    1965年美国加州大学柏克莱分校的扎德教授第一次提出了'集合'的概念.经过十多年的发展,模糊集合理论渐渐被应用到各个实际应用方面.为克服非此即彼的分类缺点,出现了以模糊集合论为数学基础的聚类分析.用模 ...

  4. ML: 聚类算法R包-对比

    测试验证环境 数据: 7w+ 条,数据结构如下图: > head(car.train) DV DC RV RC SOC HV LV HT LT Type TypeName 1 379 85.09 ...

  5. ML: 聚类算法R包-网格聚类

    网格聚类算法 optpart::clique optpart::clique CLIQUE(Clustering In QUEst)是一种简单的基于网格的聚类方法,用于发现子空间中基于密度的簇.CLI ...

  6. ML: 聚类算法R包 - 密度聚类

    密度聚类 fpc::dbscan fpc::dbscan DBSCAN核心思想:如果一个点,在距它Eps的范围内有不少于MinPts个点,则该点就是核心点.核心和它Eps范围内的邻居形成一个簇.在一个 ...

  7. Python聚类算法之基本K均值实例详解

    Python聚类算法之基本K均值实例详解 本文实例讲述了Python聚类算法之基本K均值运算技巧.分享给大家供大家参考,具体如下: 基本K均值 :选择 K 个初始质心,其中 K 是用户指定的参数,即所 ...

  8. 机器学习算法总结(五)——聚类算法(K-means,密度聚类,层次聚类)

    本文介绍无监督学习算法,无监督学习是在样本的标签未知的情况下,根据样本的内在规律对样本进行分类,常见的无监督学习就是聚类算法. 在监督学习中我们常根据模型的误差来衡量模型的好坏,通过优化损失函数来改善 ...

  9. 模式识别之聚类算法k-均值---k-均值聚类算法c实现

    //写个简单的先练习一下,测试通过 //k-均值聚类算法C语言版   #include <stdlib.h>      #include <stdio.h>      #inc ...

随机推荐

  1. hint不当索引,影响多表连接方式,最终导致SQL执行缓慢

    需求:一个SQL执行特别慢,无法返回结果,需要进行优化,最终返回结果即可. 一.SQL分析 二.尝试执行,观测执行计划 三.修改SQL 四.问题总结 一.SQL分析 )SQL文本,执行时间,执行用户 ...

  2. JS中的变量与常量

    变量 1.创建变量 1.先声明,后赋值 使用var关键字进行变量的声明 使用=进行变量的赋值 自定义变量名 2.声明的同时赋值 var age = 20: 2.命名规范 1.由数字,字母,下划线和$组 ...

  3. sscanf 与 ssprintf 用法 (转载--https://www.cnblogs.com/Anker/p/3351168.html)

    sprintf函数 sprintf函数原型为 int sprintf(char *str, const char *format, ...).作用是格式化字符串,具体功能如下所示: (1)将数字变量转 ...

  4. mask-code-python

    tf.sqeeze: 给定张量输入,此操作返回相同类型的张量,并删除所有尺寸为1的尺寸. 如果不想删除所有尺寸1尺寸,可以通过指定squeeze_dims来删除特定尺寸1尺寸.如果不想删除所有大小是1 ...

  5. Spring mvc 导出table到Excel

    /** * * @Title: exportExcel * @Description: TODO(导出到excel) * @param Page page * @return ModelAndView ...

  6. 各种浏览器兼容trim()的方法

    一.利用while方法解决 function trim(str) { while (str[0] == ' ') { str = str.slice(1); } while (str[str.leng ...

  7. 第8次Scrum会议(10/20)【欢迎来怼】

    一.小组信息 队名:欢迎来怼 小组成员 队长:田继平 成员:李圆圆,葛美义,王伟东,姜珊,邵朔,冉华 小组照片 二.开会信息 时间:2017/10/20 17:20~17:45,总计25min. 地点 ...

  8. Spark各个版本新特性

    后续会添加spark生态系统中各个组件的兼容支持情况... Spark2.0.0 * 2016-07-27正式发布 * 它是2.x版本线的上的第一个版本. * 300位contributors的超过2 ...

  9. CentOS安装备忘2

    CentOS7安装备忘2 安装过程中不联网,安装完成也不要立刻联网,先关闭远程的服务后再联网更新.安装默认使用English,目的是生成的Home下所有文件夹都是英文的,方便使用. ========= ...

  10. C++学习(三)(C语言部分)之 基本数据类型

    基本数据类型 上期回顾 stdlib.h system,命令release MT导入ico文件 基本数据类型 整数 int浮点型(小数 实型) float double字符型 char 变量 常量速度 ...