<题目连接>

题目大意:

一位同学想要买手表,他有n种硬币,每种硬币已知有num[i]个。已知手表的价钱最多m元,问她用这些钱能够凑出多少种价格来买手表。

解题分析:

很明显,这是一道多重背包的问题,下面是用二进制拆分的多重背包的万能模板。

#include <bits/stdc++.h>
using namespace std; const int INF = 1e9;
int n,m,val[],cnt[],dp[int(1e5+)]; void OneZeroPack(int m,int v,int value){ //01背包
for(int i=m;i>=v;i--)
dp[i]=max(dp[i],dp[i-v]+value);
} void CompletePack(int m,int v,int value){ //完全背包
for(int i=v;i<=m;i++)
dp[i]=max(dp[i],dp[i-v]+value);
} void MultiplePack(int m,int v,int value,int num){
if(v*num>=m) { CompletePack(m,v,value); return; } //如果这些物品总体积大于容量,当成完全背包计算
for(int k=;k<=num;k<<=){ //否则当成01背包,但是对这些物品进行二进制拆分
OneZeroPack(m,v*k,value*k);
num-=k;
}
if(num)OneZeroPack(m,v*num,value*num);
} int main(){
while(~scanf("%d%d",&n,&m),n||m){
for(int i=;i<=m;i++)dp[i]=-INF;
for(int i=;i<n;i++)scanf("%d",&val[i]);
for(int i=;i<n;i++)scanf("%d",&cnt[i]);
dp[]=;
for(int i=;i<n;i++)
MultiplePack(m,val[i],val[i],cnt[i]);
int ans=;
for(int i=;i<=m;i++)
if(dp[i]>)ans++;
printf("%d\n",ans);
}
}

另一种方法:

#include <cstdio>
#include <cstring> bool dp[];
int use[];//i元钱时某种钱用的次数
int n, m;
int val[], num[]; void solve()
{
memset(dp, , sizeof(dp));
dp[] = ;
int count = ;
for (int i = ; i <= n; i++) //此题解法就是,现将每一个物品*(1~num[i])所能达到的价格都标记
{
memset(use, , sizeof(use)); //每次初始化第i种钱用了0次
for (int j = val[i]; j <= m; j++) //顺序枚举钱数
{
if (dp[j - val[i]] && !dp[j] && use[j - val[i]] < num[i])
{
dp[j] = ; //如果钱数为i的情况记录过了,那么就标记,防止count重复+1
use[j] = use[j - val[i]] + ;//到达j元用的i种钱的次数是到达 j-val[i]元用的次数加1
count++;
}
}
}
printf("%d\n", count);
} int main()
{
while (~scanf("%d %d", &n, &m),n||m)
{
for (int i = ; i <= n; i++)
scanf("%d", &val[i]);
for (int i = ; i <= n; i++)
scanf("%d", &num[i]); solve();
}
return ;
}

HDU 2844 Coins 【多重背包】(模板)的更多相关文章

  1. hdu 2844 Coins (多重背包+二进制优化)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=2844 思路:多重背包 , dp[i] ,容量为i的背包最多能凑到多少容量,如果dp[i] = i,那么代表 ...

  2. HDu -2844 Coins多重背包

    这道题是典型的多重背包的题目,也是最基础的多重背包的题目 题目大意:给定n和m, 其中n为有多少中钱币, m为背包的容量,让你求出在1 - m 之间有多少种价钱的组合,由于这道题价值和重量相等,所以就 ...

  3. HDU - 2844 Coins(多重背包+完全背包)

    题意 给n个币的价值和其数量,问能组合成\(1-m\)中多少个不同的值. 分析 对\(c[i]*a[i]>=m\)的币,相当于完全背包:\(c[i]*a[i]<m\)的币则是多重背包,考虑 ...

  4. hdu 2844 Coins 多重背包(模板) *

    Coins                                                                             Time Limit: 2000/1 ...

  5. HDU 2844 Coins (多重背包计数 空间换时间)

    Coins Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  6. hdu 2844 coins(多重背包 二进制拆分法)

    Problem Description Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. On ...

  7. HDU 2844 Coin 多重背包

    Coins Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  8. 背包系列练习及总结(hud 2602 && hdu 2844 Coins && hdu 2159 && poj 1170 Shopping Offers && hdu 3092 Least common multiple && poj 1015 Jury Compromise)

    作为一个oier,以及大学acm党背包是必不可少的一部分.好久没做背包类动规了.久违地练习下-.- dd__engi的背包九讲:http://love-oriented.com/pack/ 鸣谢htt ...

  9. HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化)

    HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化) 题意分析 先把每种硬币按照二进制拆分好,然后做01背包即可.需要注意的是本题只需要求解可以凑出几种金钱的价格,而不需要输出种数 ...

  10. HDU 2191 珍惜现在,感恩生活(多重背包模板题)

    多重背包模板题 #include<iostream> #include<cstring> #include<algorithm> using namespace s ...

随机推荐

  1. 第5月第7天 php slim

    1. <?php require 'Slim/Slim.php'; require 'DBManagement.php'; \Slim\Slim::registerAutoloader(); $ ...

  2. <video>标签:视频播放器动态设置src

    HTML代码 <div  id="my_div">    <video id="my_video"  width="600" ...

  3. mysql 案例~ 主从复制转化为级联复制

    一 需求 mysql 主从复制切换成级联复制二 核心思想 1 开启级联复制 2 确定postion点场景 A->B A-C 三 切换步骤  1 先确定好B为级联复制库  2 B添加log_upd ...

  4. Informatic学习总结_day03

    1.update strategy

  5. Netty+SpringBoot写一个基于Http协议的文件服务器

    本文参考<Netty权威指南> NettyApplication package com.xh.netty; import org.springframework.boot.SpringA ...

  6. Latex 算法Algorithm

    在计算机科学当中,论文当中经常需要排版算法.相信大家在读论文中也看见了很多排版精美的算法.本文就通过示例来简要介绍一下 algorithms 束的用法.该束主要提供了两个宏包,包含两种进行算法排版的环 ...

  7. 机器学习编程语言之争,Python夺魁

    机器学习编程语言之争,Python夺魁 随着科技的发展,拥有高容量.高速度和多样性的大数据已经成为当今时代的主题词.数据科学领域中所采用的机器学习编程语言大相径庭.究竟哪种语言最适合机器学习成为争论不 ...

  8. memset()函数

    memset需要的头文件 <memory.h> or <string.h> memset <wchar.h> wmemset  函数介绍 void *memset( ...

  9. 安装installshield问题

    install designer中 general information 选择setup languages shortcuts编辑  开始  中显示目录 文件路径 C:\Program Files ...

  10. JSON和JSONP详解

    什么是JSON JSON是一种基于文本的数据交换方式,或者叫做数据描述格式,你是否该选用他首先肯定要关注它所拥有的优点. JSON的优点: 1.基于纯文本,跨平台传递极其简单: 2.Javascrip ...