题目链接

问题描述

给定一个N行M列的矩阵,往里面填入$1-N\times M$个数字,使得这个矩阵每行、每列都满足递增。问:有多少种填法?

问题分析

这个问题很难,如果能够直接想到,那就是天才了。

此问题中描述的矩阵就是杨氏矩阵的特例。杨氏矩阵又叫杨氏图表。

杨氏图表,它是这样一个二维表,满足条件:

(1)如果格子(i,j)没有元素,则它右边和上边的相邻格子也一定没有元素。

(2)如果格子(i,j)有元素a[i,j],则它右边和上边的相邻格子要么没有元素,要么有元素且比a[i][j]大。

杨氏矩阵的计数公式为:

$$count=\frac{n!}{\sum_{x \in Grids}{hook(x)}}$$

其中$hook(x)$表示格子x下方、右方的空白格点数(不包括它自己)之和+1。

关键方法

由杨氏矩阵的计数公式可知,此问题是一道数学题。关键在于模除运算,这可以通过扩展欧几里得算法求逆元来实现。

#include<stdio.h>
#include<iostream>
using namespace std;
typedef long long ll;
const int mod = 1e9 + 7;
ll gcd(ll a, ll b, ll &x, ll &y) {
if (b == 0) {
x = 1, y = 0;
return a;
}
ll q = gcd(b, a%b, y, x);
y -= a / b * x;
return q;
}
ll reverse(int v) {
ll x, y;
ll g = gcd(v, mod, x, y);
return x;
}
int main() {
int n, m;
cin >> n >> m;
ll s = 1;
for (int i = 1; i <= n * m; i++) {
s *= i;
s %= mod;
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
int hook = n - i + m - j-1;
int r = reverse(hook);
s *= r;
s %= mod;
}
}
s = (s + mod) % mod;
cout << s << endl;
return 0;
}

hihocoder第238周:杨氏矩阵的个数的更多相关文章

  1. poj2279排队——杨氏矩阵与钩子公式(DP爆内存)

    题目:http://poj.org/problem?id=2279 书上的DP做法会爆内存,尝试写了一个,过了样例. 转载: 代码如下: #include<iostream> #inclu ...

  2. 【c语言】二维数组中的查找,杨氏矩阵在一个二维数组中,每行都依照从左到右的递增的顺序排序,输入这种一个数组和一个数,推断数组中是否包括这个数

    // 二维数组中的查找,杨氏矩阵在一个二维数组中.每行都依照从左到右的递增的顺序排序. // 每列都依照从上到下递增的顺序排序.请完毕一个函数,输入这种一个数组和一个数.推断数组中是否包括这个数 #i ...

  3. 杨氏矩阵:查找x是否在矩阵中,第K大数

    参考:http://xudacheng06.blog.163.com/blog/static/4894143320127891610158/ 杨氏矩阵(Young Tableau)是一个很奇妙的数据结 ...

  4. 【杨氏矩阵+勾长公式】POJ 2279 Mr. Young's Picture Permutations

    Description Mr. Young wishes to take a picture of his class. The students will stand in rows with ea ...

  5. 【C语言】二维数组中的查找,杨氏矩阵

    //二维数组中的查找,杨氏矩阵 //在一个二维数组中,每行都依照从左到右的递增的顺序排序.每列都依照从上到下递增的顺序排序. //请完毕一个函数.输入这种一个数组和一个数,推断数组中是否包括这个数. ...

  6. 杨氏矩阵定义及其查找的实现C++

    先介绍一下这个数据结构的定义,Young Tableau有一个m*n的矩阵,然后有一数组 a[k], 其中 k<=m*n ,然后把a[k]中的数填入 m*n 的矩阵中,填充规则为: 1.  每一 ...

  7. 杨氏矩阵查找元素位置Java实现

    杨氏矩阵是一个二维矩阵,特点是每一行的右边的元素比左边的大,每一列下面的元素比上面的大: 比如 1 2 8 9 2 4 9 12 4 7 10 13 6 8 11 15 假设要查找的变量为target ...

  8. POJ2279杨氏矩阵+钩子定理

    题目:http://poj.org/problem?id=2279 有dp做法,但会MLE. dp的思想很好,是通过 “按身高由小到大往进放” 把 “身高小于” 的条件转化成 “放进去的先后” ,于是 ...

  9. 杨氏矩阵C++实现

    何为杨氏矩阵?这个网上的介绍很多,下面给出杨氏矩阵搜索算法: #include <iostream> using namespace std; // 杨氏矩阵查找算法 ], int N, ...

随机推荐

  1. hdu 2544 hdu 1874 poj 2387 Dijkstra 模板题

    hdu 2544  求点1到点n的最短路  无向图 Sample Input2 1 //结点数 边数1 2 3 //u v w3 31 2 52 3 53 1 20 0 Sample Output32 ...

  2. [转] Java中public,private,final,static等概念的解读

    作为刚入门Java的小白,对于public,private,final,static等概念总是搞不清楚,到底都代表着什么,这里做一个简单的梳理,和大家分享,若有错误请指正,谢谢~ 访问权限修饰符 pu ...

  3. Codeforces 815C Karen and Supermarket 树形dp

    Karen and Supermarket 感觉就是很普通的树形dp. dp[ i ][ 0 ][ u ]表示在 i 这棵子树中选择 u 个且 i 不用优惠券的最小花费. dp[ i ][ 1 ][ ...

  4. 让我们了解 Ceph 分布式存储

    前言 最近在学习 kubernetes 过程中,想实现 pod 数据的持久化.在调研的过程中,发现 ceph 在最近几年发展火热,也有很多案例落地企业.在选型方面,个人更加倾向于社区火热的项目,Glu ...

  5. unbuntu 18.04 LTS 版 安装Samba服务器

      首先需要注意的是,此时服务器的版本是乌班图18.04 LTS Server ,安装配置Samba服务器 . 首先来对当前的软件进行更新. 1 sudo apt-get upgrade 2 sudo ...

  6. 使用PhoneGap搭建一个山寨京东APP(转)

      为什么要写一个App 首先解释下写出来的这个App,其实无任何功能,只是用HTML和CSS模仿JD移动端界面写的一个适配移动端的Web界面.本篇主要内容是介绍如何使用PhoneGap把开发出来的m ...

  7. canvas学习-----画直线

    画布 1.添加canvas标签  可以通过CSS或者JS来设置canvs标签的width,height;Ps: <canvas id="cvs"></canvas ...

  8. PLSQL Developer的使用之对象浏览器

    PLSQL Developer的使用之对象浏览器 (转自https://www.cnblogs.com/mq0036/p/6437834.html#point11) 能够显示与 PL/SQL 开发相关 ...

  9. 洛谷P1144 最短路计数(SPFA)

    To 洛谷.1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M ...

  10. java生成一次性验证码

    1.编写生成验证码的工具类: import java.awt.BasicStroke;import java.awt.Color;import java.awt.Font;import java.aw ...