[AGC025B]RGB Coloring

题目大意:

有\(n(n\le3\times10^5)\)个格子,每个格子可以选择涂成红色、蓝色、绿色或不涂色,三种颜色分别产生\(a,b,a+b(a,b\le3\times10^5)\)的收益。问有多少种涂色方案使得总收益为\(k(k\le18\times10^{10})\)。

思路:

涂绿色就相当于同时涂了红色和蓝色,因此枚举红色出现次数\(i\)和蓝色出现次数\(j\)。答案就是\(\displaystyle\sum_{\substack{0\le i,j\le n\\ai+bj\le k}}{n\choose i}{n\choose j}\)。

时间复杂度\(\mathcal O(n)\)。

源代码:

#include<cstdio>
#include<cctype>
#include<algorithm>
typedef long long int64;
inline int64 getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int64 x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=3e5+1,mod=998244353;
int fac[N],ifac[N];
void exgcd(const int &a,const int &b,int &x,int &y) {
if(!b) {
x=1,y=0;
return;
}
exgcd(b,a%b,y,x);
y-=a/b*x;
}
inline int inv(const int &x) {
int ret,tmp;
exgcd(x,mod,ret,tmp);
return (ret%mod+mod)%mod;
}
inline int power(int a,int k) {
int ret=1;
for(;k;k>>=1) {
if(k&1) ret=(int64)ret*a%mod;
a=(int64)a*a%mod;
}
return ret;
}
inline int C(const int &n,const int &m) {
return (int64)fac[n]*ifac[m]%mod*ifac[n-m]%mod;
}
int main() {
int n=getint(),a=getint(),b=getint();
int64 k=getint();
for(register int i=fac[0]=1;i<=n;i++) {
fac[i]=(int64)fac[i-1]*i%mod;
}
ifac[n]=inv(fac[n]);
for(register int i=n;i>=1;i--) {
ifac[i-1]=(int64)ifac[i]*i%mod;
}
int ans=0;
for(register int i=0;i<=n&&(int64)a*i<=k;i++) {
if((k-(int64)a*i)%b!=0) continue;
const int64 j=(k-(int64)a*i)/b;
if(j>n) continue;
(ans+=(int64)C(n,i)*C(n,j)%mod)%=mod;
}
printf("%d\n",ans);
return 0;
}

[AGC025B]RGB Coloring的更多相关文章

  1. AtCoder Grand Contest 025 B - RGB Coloring

    B - RGB Coloring 求ax + by = k (0<=x<=n && 0<=y<=n)的方案数,最后乘上C(n, x)*C(n,y) 代码: #i ...

  2. AGC 025 B - RGB Coloring

    B - RGB Coloring Time limit : 2sec / Memory limit : 1024MB Score : 700 points Problem Statement Taka ...

  3. 【AtCoder】AGC025题解

    A - Digits Sum 枚举即可 代码 #include <bits/stdc++.h> #define fi first #define se second #define pii ...

  4. AGC025简要题解

    AGC025简要题解 B RGB Coloring 一道简单题,枚举即可. C Interval Game 考虑可以进行的操作只有两种,即左拉和右拉,连续进行两次相同的操作是没有用的. 左拉时肯定会选 ...

  5. 【AGC025B】RGB Color

    [AGC025B]RGB Color 题面描述 Link to Atcoder Link to Luogu Takahashi has a tower which is divided into \( ...

  6. RGB,CMYK,HSB各种颜色表示的转换 C#语言

    Introduction Why an article on "colors"? It's the same question I asked myself before writ ...

  7. html5中canvas的使用 获取鼠标点击页面上某点的RGB

    1.html5中的canvas在IE9中可以跑起来.在IE8则跑不起来,这时候就需要一些东西了. 我推荐这种方法,这样显得代码不乱. <!--[if lt IE9]> <script ...

  8. 【视频处理】YUV与RGB格式转换

    YUV格式具有亮度信息和色彩信息分离的特点,但大多数图像处理操作都是基于RGB格式. 因此当要对图像进行后期处理显示时,需要把YUV格式转换成RGB格式. RGB与YUV的变换公式如下: YUV(25 ...

  9. Applying vector median filter on RGB image based on matlab

    前言: 最近想看看矢量中值滤波(Vector median filter, VMF)在GRB图像上的滤波效果,意外的是找了一大圈却发现网上没有现成的code,所以通过matab亲自实现了一个,需要学习 ...

随机推荐

  1. Linux命令:pigz多线程压缩工具【转】

    学习Linux系统时都会学习这么几个压缩工具:gzip.bzip2.zip.xz,以及相关的解压工具.关于这几个工具的使用和相互之间的压缩比以及压缩时间对比可以看:Linux中归档压缩工具学习 那么P ...

  2. kafka系列七、kafka核心配置

    一.producer核心配置 1.acks :发送应答(默认值:1) 生产者在考虑完成请求之前要求leader收到的确认的数量.这控制了发送的记录的持久性.允许以下设置: acks=0:设置为0,则生 ...

  3. C/C++:函数调用规则__stdcall,__cdecl,__pascal,__fastcall

    __cdecl __cdecl 是 C Declaration  的缩写,表示 C 语言默认的函数调用方法:所有参数从右到左依次入栈,这些参数由调用者清除,称为手动清栈.被调用函数不会要求调用者传递多 ...

  4. Ex 6_5棋子放置问题_第八次作业

    题目貌似有问题 (b) 子问题定义: 设maxValue[i][j]为棋盘的前i行中最后一行为i时第i行按照第j种放置方式放置时得到的最大覆盖值,comp[i][j]为第i种放置方式与第j种放置方式是 ...

  5. js实现星级评分效果(非常规5个li代码)

    1. 前言 此方案受到JS单行写一个评级组件启发,自己写了一个简单Demo. 功能有正常滑动,动态显示实心星星个数:当点击确认,则保持当前的实心星星个数:再移动时未点击,则离开后还是保持之前的状态. ...

  6. IntelliJ IDEA创建JavaWeb工程及配置Tomcat部署

    步骤: 在WEB-INF 下创建classes 和 lib 两个文件夹 右上角一个蓝色的按钮... Modules选项卡,Paths下的配置...输出路径选择classes Dependencies选 ...

  7. 《java程序设计》结对编程-四则运算(第一周-阶段总结)

    一.需求分析(描述自己对需求的理解,以及后续扩展的可能性) 实现一个命令行程序,要求: - 自动生成小学四则运算题目(加,减,乘,除) - 支持整数 - 支持多运算符(比如生成包含100个运算符的题目 ...

  8. Hibernate 常用jar包 分析

    antlr-2.7.6.jar的作用 ANTLR (ANother Tool for Language Recognition) 是一个PCCTS制定的语言工具,它为他创建认定者,程序编译者,翻译者提 ...

  9. mac安装navicat mysql破解版

    下载破解中文版http://m6.pc6.com/xuh6/navicat12027pre.zip 完成下载后无法正常进行安装,此时应该打开命令行执行 sudo spctl --master-disa ...

  10. PHP接口继承及接口多继承原理与实现方法详解

    在PHP的接口中,接口可以继承接口.虽然PHP类只能继承一个父类(单继承),但是接口和类不同,接口可以实现多继承,可以继承一个或者多个接口.当然接口的继承也是使用extends关键字,要多个继承的话只 ...