CodeForces903G Yet Another Maxflow Problem 扫描线 + 线段树 + 最小割
给定两条链\(A, B\),其中\(A\)链某些点向\(B\)链有连边,支持修改\(A\)链中的某条边权以及查询\(A_1\)到\(B_n\)的最大流
显而易见,\(A\)和\(B\)链中一定满足左部分属于\(S\)集,右部分属于\(T\)集
枚举\(A, B\)的分界点在哪里,我们就能知道哪些边需要被割掉
可以发现,对于\(A\)链上的一个点而言,割\(A,, B\)之间的边以及\(B\)边的最小值是确定的
那么,对于\(A\)链上的每个点用扫描线预处理出这个最小值
然后最后再来一个线段树来维护\(A\)链上的权值即可
复杂度\(O(n \log n)\)
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define ll long long
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --)
#define gc getchar
inline int read() {
int p = 0, w = 1; char c = gc();
while(c > '9' || c < '0') { if(c == '-') w = -1; c = gc(); }
while(c >= '0' && c <= '9') p = p * 10 + c - '0', c = gc();
return p * w;
}
const int sid = 2e5 + 5;
int n, m, q;
int X[sid], Y[sid];
struct myk {
int a, b, v;
friend bool operator < (myk x, myk y)
{ return x.a < y.a; }
} Q[sid];
#define ls (o << 1)
#define rs (o << 1 | 1)
struct Kujuo_Miyako_Saiko {
ll mi[sid << 2], add[sid << 2];
inline void build(int o, int l, int r) {
if(l == r) { mi[o] = Y[l - 1]; return; }
int mid = (l + r) >> 1;
build(ls, l, mid);
build(rs, mid + 1, r);
mi[o] = min(mi[ls], mi[rs]);
}
inline void mdf(int o, int l, int r, int ml, int mr, ll v) {
if(ml > r || mr < l) return;
if(ml <= l && mr >= r) { mi[o] += v; add[o] += v; return; }
int mid = (l + r) >> 1;
mdf(ls, l, mid, ml, mr, v);
mdf(rs, mid + 1, r, ml, mr, v);
mi[o] = min(mi[ls], mi[rs]) + add[o];
}
} km;
ll V[sid];
inline void solve1() {
km.build(1, 1, n);
sort(Q + 1, Q + m + 1);
for(ri i = 1, j = 1; i <= n; i ++) {
while(Q[j].a == i && j <= m) km.mdf(1, 1, n, 1, Q[j].b, Q[j].v), j ++;
V[i] = km.mi[1];
}
}
ll mi[sid << 2];
inline void build(int o, int l, int r) {
if(l == r) { mi[o] = V[l] + X[l]; return; }
int mid = (l + r) >> 1;
build(ls, l, mid);
build(rs, mid + 1, r);
mi[o] = min(mi[ls], mi[rs]);
}
inline void mdf(int o, int l, int r, int p, int v) {
if(l == r) { mi[o] = V[l] + v; return; }
int mid = (l + r) >> 1;
if(p <= mid) mdf(ls, l, mid, p, v);
else mdf(rs, mid + 1, r, p, v);
mi[o] = min(mi[ls], mi[rs]);
}
inline void solve2() {
build(1, 1, n);
printf("%lld\n", mi[1]);
rep(i, 1, q) {
int v = read(), w = read();
mdf(1, 1, n, v, w); printf("%lld\n", mi[1]);
}
}
int main() {
n = read(); m = read(); q = read();
rep(i, 1, n - 1) X[i] = read(), Y[i] = read();
rep(i, 1, m) Q[i].a = read(), Q[i].b = read(), Q[i].v = read();
solve1(); solve2();
return 0;
}
CodeForces903G Yet Another Maxflow Problem 扫描线 + 线段树 + 最小割的更多相关文章
- bzoj 3218: a + b Problem【主席树+最小割】
直接建图比较显然,是(s,i,w),(i,t,b),(i,i',p),(i,j,inf),然而建出来之后发现边数是n方级别的,显然跑不过去,然后就有一种比较神的思路:把a离散了建一棵权值线段树,然后要 ...
- BZOJ 3218 A + B Problem (可持久化线段树+最小割)
做法见dalao博客 geng4512的博客, 思路就是用线段树上的结点来进行区间连边.因为有一个只能往前面连的限制,所以还要可持久化.(duliu) 一直以来我都是写dinicdinicdinic做 ...
- HDU 3642 - Get The Treasury - [加强版扫描线+线段树]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3642 Time Limit: 10000/5000 MS (Java/Others) Memory L ...
- BZOJ_2298_[HAOI2011]problem a_线段树
BZOJ_2298_[HAOI2011]problem a_线段树 Description 一次考试共有n个人参加,第i个人说:“有ai个人分数比我高,bi个人分数比我低.”问最少有几个人没有说真话( ...
- 【BZOJ3958】[WF2011]Mummy Madness 二分+扫描线+线段树
[BZOJ3958][WF2011]Mummy Madness Description 在2011年ACM-ICPC World Finals上的一次游览中,你碰到了一个埃及古墓. 不幸的是,你打开了 ...
- HDU 3265/POJ 3832 Posters(扫描线+线段树)(2009 Asia Ningbo Regional)
Description Ted has a new house with a huge window. In this big summer, Ted decides to decorate the ...
- 【bzoj4491】我也不知道题目名字是什么 离线扫描线+线段树
题目描述 给定一个序列A[i],每次询问l,r,求[l,r]内最长子串,使得该子串为不上升子串或不下降子串 输入 第一行n,表示A数组有多少元素接下来一行为n个整数A[i]接下来一个整数Q,表示询问数 ...
- hdu1542 Atlantis(扫描线+线段树+离散)矩形相交面积
题目链接:点击打开链接 题目描写叙述:给定一些矩形,求这些矩形的总面积.假设有重叠.仅仅算一次 解题思路:扫描线+线段树+离散(代码从上往下扫描) 代码: #include<cstdio> ...
- P3722 [AH2017/HNOI2017]影魔(单调栈+扫描线+线段树)
题面传送门 首先我们把这两个贡献翻译成人话: 区间 \([l,r]\) 产生 \(p_1\) 的贡献当且仅当 \(a_l,a_r\) 分别为区间 \([l,r]\) 的最大值和次大值. 区间 \([l ...
随机推荐
- char *与const char **函数参数传参问题
传参方法 ## 函数 extern void f2 ( const char ** ccc ); const char ch = 'X'; char * ch_ptr; const char ** c ...
- caffe中 softmax 函数的前向传播和反向传播
1.前向传播: template <typename Dtype> void SoftmaxLayer<Dtype>::Forward_cpu(const vector< ...
- 【转】深入浅出JMS(一)--JMS基本概念
摘要 The Java Message Service (JMS) API is a messaging standard that allows application components bas ...
- (网络编程)基于tcp(粘包问题) udp协议的套接字通信
import socket 1.通信套接字(1人1句)服务端和1个客户端 2.通信循环(1人多句)服务端和1个客户端 3.通信循环(多人(串行)多句)多个客户端(服务端服务死:1个客户端---&g ...
- [转]MySQL中函数CONCAT及GROUP_CONCAT
一.CONCAT()函数 CONCAT()函数用于将多个字符串连接成一个字符串. 使用数据表Info作为示例,其中SELECT id,name FROM info LIMIT 1;的返回结果为 +-- ...
- 同时装了Python3和Python2,怎么用pip
作者:匿名用户链接:https://www.zhihu.com/question/21653286/answer/95532074来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注 ...
- Day6------------磁盘用满的两种情况
1.文件包含元数据和写入的内容 元数据:存在硬盘中的inode ls -i /etc/passwd.bak 查看inode df -i 查看inode 2.磁盘用满的两种情况 1).内容太多 2).空 ...
- 深入理解AsyncTask的工作原理
一.为什么需要工作者线程 我们知道,Android应用的主线程(UI 线程)肩负着绘制用户界面和及时响应用户操作的重任,为了避免“用户点击按钮后没反应”这样的糟糕用户体验,我们就要确保主线程时刻保持着 ...
- 追求极致--纯css制作三角、圆形按钮,兼容ie6
参考了天猫.微博等网站的做法,用纯html和css实现,效果还是不错的.以下是成果,兼容主流浏览器,包括ie6. <!DOCTYPE html PUBLIC "-//W3C//DTD ...
- java多线程快速入门(一)
1.什么是进程 比如:QQ.QQ游戏.eclipse都是进程,可以通过任务管理器查看进程 2.进程和线程区别 线程是进程的一部分,一个进程可以包含多个线程,一个线程只能属于一个进程 进程是所有线程的集 ...