caffe神经网络中不同的lr_policy间的区别
lr_policy可以设置为下面这些值,相应的学习率的计算为:
- - fixed: 保持base_lr不变.
- - step: 如果设置为step,则还需要设置一个stepsize, 返回 base_lr * gamma ^ (floor(iter / stepsize)),其中iter表示当前的迭代次数
- - exp: 返回base_lr * gamma ^ iter, iter为当前迭代次数
- - inv: 如果设置为inv,还需要设置一个power, 返回base_lr * (1 + gamma * iter) ^ (- power)
- - multistep: 如果设置为multistep,则还需要设置一个stepvalue。这个参数和step很相似,step是均匀等间隔变化,而multistep则是根据stepvalue值变化
- - poly: 学习率进行多项式误差, 返回 base_lr (1 - iter/max_iter) ^ (power)
- - sigmoid: 学习率进行sigmod衰减,返回 base_lr ( 1/(1 + exp(-gamma * (iter - stepsize))
caffe神经网络中不同的lr_policy间的区别的更多相关文章
- 【神经网络与深度学习】Caffe部署中的几个train-test-solver-prototxt-deploy等说明
1:神经网络中,我们通过最小化神经网络来训练网络,所以在训练时最后一层是损失函数层(LOSS), 在测试时我们通过准确率来评价该网络的优劣,因此最后一层是准确率层(ACCURACY). 但是当我们真正 ...
- 理解交叉熵(cross_entropy)作为损失函数在神经网络中的作用
交叉熵的作用 通过神经网络解决多分类问题时,最常用的一种方式就是在最后一层设置n个输出节点,无论在浅层神经网络还是在CNN中都是如此,比如,在AlexNet中最后的输出层有1000个节点: 而即便是R ...
- 【深度学习篇】--神经网络中的池化层和CNN架构模型
一.前述 本文讲述池化层和经典神经网络中的架构模型. 二.池化Pooling 1.目标 降采样subsample,shrink(浓缩),减少计算负荷,减少内存使用,参数数量减少(也可防止过拟合)减少输 ...
- 【深度学习篇】--神经网络中的调优一,超参数调优和Early_Stopping
一.前述 调优对于模型训练速度,准确率方面至关重要,所以本文对神经网络中的调优做一个总结. 二.神经网络超参数调优 1.适当调整隐藏层数对于许多问题,你可以开始只用一个隐藏层,就可以获得不错的结果,比 ...
- 第二节,神经网络中反向传播四个基本公式证明——BackPropagation
假设一个三层的神经网络结构图如下: 对于一个单独的训练样本x其二次代价函数可以写成: C = 1/2|| y - aL||2 = 1/2∑j(yj - ajL)2 ajL=σ(zjL) zjl = ∑ ...
- 神经网络中的偏置项b到底是什么?
原文地址:https://blog.csdn.net/Uwr44UOuQcNsUQb60zk2/article/details/81074408 前言 很多人不明白为什么要在神经网络.逻 ...
- 如何选取一个神经网络中的超参数hyper-parameters
1.什么是超参数 所谓超参数,就是机器学习模型里面的框架参数.比如聚类方法里面类的个数,或者话题模型里面话题的个数等等,都称为超参数.它们跟训练过程中学习的参数(权重)是不一样的,通常是手工设定的,经 ...
- [AI]神经网络章2 神经网络中反向传播与梯度下降的基本概念
反向传播和梯度下降这两个词,第一眼看上去似懂非懂,不明觉厉.这两个概念是整个神经网络中的重要组成部分,是和误差函数/损失函数的概念分不开的. 神经网络训练的最基本的思想就是:先“蒙”一个结果,我们叫预 ...
- 神经网络中的池化层(pooling)
在卷积神经网络中,我们经常会碰到池化操作,而池化层往往在卷积层后面,通过池化来降低卷积层输出的特征向量,同时改善结果(不易出现过拟合).为什么可以通过降低维度呢? 因为图像具有一种“静态性”的属性,这 ...
随机推荐
- hhvm
hhvm(Hip Virtual Machine),是一个虚拟机,用来运行PHP的 hhvm是有Facebook开发的,用户提升PHP性能的,hhvm是开源的,
- 深探树形dp
看到同学在写一道树形dp,好奇直接拿来写,发现很不简单. 如图,看上去是不是很像选课,没错这不是选课,升级版吧,多加了点东西罢了.简单却调了一晚上和一上午. 思路:很简单强联通分量+缩点+树形dp.直 ...
- 剑指Offer题解(Python版)
https://blog.csdn.net/tinkle181129/article/details/79326023# 二叉树的镜像 链表中环的入口结点 删除链表中重复的结点 从尾 ...
- python pip install 报错TypeError: unsupported operand type(s) for -=: 'Retry' and 'int' Command "python setup.py egg_info" failed with error code 1 in
pip install http://download.pytorch.org/whl/cu80/torch-0.2.0.post3-cp27-cp27mu-manylinux1_x86_64.whl ...
- Matlab中导入文本文件中的数据 矩阵合并 以及C++中删除文件操作
今天用到了Matlab读取文本文件中按照一定格式存储好的数据,然后进行后续的分析计算等,因此涉及到Matlab的文件读取,记录在这里,供以后查阅: fid = fopen('train.set', ' ...
- linux dmesg 查看系统故障信息
dmesg 可以查看linux 内核信息 dmesg’命令设备故障的诊断是非常重要的.在‘dmesg’命令的帮助下进行硬件的连接或断开连接操作时,我们可以看到硬件的检测或者断开连接的信息.‘dmesg ...
- mysql 初识sql语句
有了mysql这个数据库软件,就可以将程序员从对数据的管理中解脱出来,专注于对程序逻辑的编写 mysql服务端软件即mysqld帮我们管理好文件夹以及文件,前提是作为使用者的我们,需要下载mysql的 ...
- MySQL 8.0.11 报错[ERROR] [MY-011087] Different lower_case_table_names settings for server ('1')
--报错信息: 2018-06-07T19:52:26.943083+08:00 0 [System] [MY-010116] [Server] /usr/local/mysql/bin/mysqld ...
- 爬虫mm131明星照片
''' 1. 爬取以下站点中各个明星图片,分别单独建文件夹存放. 起始URL地址:http://www.mm131.com/mingxing ''' import os import logging ...
- vue-父组件向子组件传递方法
1.父组件向子组件传递方法,使用的是事件绑定机制 v-on:传递给子组件的方法名=“父组件中的方法”