题目描述

混乱的奶牛[Don Piele, 2007]Farmer John的N(4 <= N <= 16)头奶牛中的每一头都有一个唯一的编号S_i (1 <= S_i <= 25,000). 奶牛为她们的编号感到骄傲, 所以每一头奶牛都把她的编号刻在一个金牌上, 并且把金牌挂在她们宽大的脖子上. 奶牛们对在挤奶的时候被排成一支"混乱"的队伍非常反感. 如果一个队伍里任意两头相邻的奶牛的编号相差超过K (1 <= K <= 3400), 它就被称为是混乱的. 比如说,当N = 6, K = 1时, 1, 3, 5, 2, 6, 4 就是一支"混乱"的队伍, 但是 1, 3, 6, 5, 2, 4 不是(因为5和6只相差1). 那么, 有多少种能够使奶牛排成"混乱"的队伍的方案呢?

输入

* 第 1 行: 用空格隔开的两个整数N和K

* 第 2..N+1 行: 第i+1行包含了一个用来表示第i头奶牛的编号的整数: S_i

输出

第 1 行: 只有一个整数, 表示有多少种能够使奶牛排成"混乱"的队伍的方案. 答案保证是 一个在64位范围内的整数.

样例输入

4 1
3
4
2
1

样例输出

2


题解

裸的状态压缩dp

但是注意要开long long

f[i][j]表示以i结尾j状态的方案数

#include <cstdio>
#include <cstdlib>
long long f[17][65540] , s[17];
int main()
{
long long n , p , i , j , k , l , ans = 0;
scanf("%lld%lld" , &n , &p);
for(i = 1 ; i <= n ; i ++ )
scanf("%lld" , &s[i]);
for(i = 1 ; i <= n ; i ++ )
f[i][1 << (i - 1)] = 1;
for(i = 0 ; i < (1 << n) ; i ++ )
for(j = 1 ; j <= n ; j ++ )
if(f[j][i])
for(k = 1 ; k <= n ; k ++ )
if(!((1 << (k - 1)) & i) && abs(s[j] - s[k]) > p)
f[k][(1 << (k - 1)) | i] += f[j][i];
for(i = 1 ; i <= n ; i ++ )
ans += f[i][(1 << n) - 1];
printf("%lld\n" , ans);
return 0;
}

【bzoj1231】[Usaco2008 Nov]mixup2 混乱的奶牛的更多相关文章

  1. bzoj1231[Usaco2008 Nov]mixup2 混乱的奶牛(状压dp)

    1231: [Usaco2008 Nov]mixup2 混乱的奶牛 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1032  Solved: 588[ ...

  2. 【状压dp】Bzoj1231 [Usaco2008 Nov]mixup2 混乱的奶牛

    Description 混乱的奶牛 [Don Piele, 2007] Farmer John的N(4 <= N <= 16)头奶牛中的每一头都有一个唯一的编号S_i (1 <= S ...

  3. bzoj1231 [Usaco2008 Nov]mixup2 混乱的奶牛——状压DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1231 小型状压DP: f[i][j] 表示状态为 j ,最后一个奶牛是 i 的方案数: 所以 ...

  4. bzoj1231: [Usaco2008 Nov]mixup2 混乱的奶牛

    思路:状压dp,设f[i][j]表示当前已经选出的牛的状态为i,最后一头选出的牛为j的方案数. 然后注意就是初值不能是f[0][i]=1,因为所有牛本来都可以第一个被选中,然而这样一定初值有些牛可能就 ...

  5. [Usaco2008 Nov]mixup2 混乱的奶牛 简单状压DP

    1231: [Usaco2008 Nov]mixup2 混乱的奶牛 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 685  Solved: 383[S ...

  6. BZOJ 1231: [Usaco2008 Nov]mixup2 混乱的奶牛( dp )

    状压dp dp( x , S ) 表示最后一个是 x , 当前选的奶牛集合为 S , 则状态转移方程 : dp( x , S ) =  Σ dp( i , S - { i } )  ( i ∈ S , ...

  7. bzoj 1231: [Usaco2008 Nov]mixup2 混乱的奶牛 -- 状压DP

    1231: [Usaco2008 Nov]mixup2 混乱的奶牛 Time Limit: 10 Sec  Memory Limit: 162 MB Description 混乱的奶牛 [Don Pi ...

  8. bzoj[Usaco2008 Nov]mixup2 混乱的奶牛 状压dp

    [Usaco2008 Nov]mixup2 混乱的奶牛 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1204  Solved: 698[Submit ...

  9. 【bzoj1231】[Usaco2008 Nov]mixup2 混乱的奶牛 状态压缩dp

    题目描述 混乱的奶牛[Don Piele, 2007]Farmer John的N(4 <= N <= 16)头奶牛中的每一头都有一个唯一的编号S_i (1 <= S_i <= ...

随机推荐

  1. php 7.0 新特性

    php 7 主题是性能优化  SEO 之前版本:开发效率快,语言本身性能差 普通的php网站:IO密集型,瓶颈在mysql上,体现不出来php的性能劣势,在密集计算方面比C,C++,JAVA差几十倍甚 ...

  2. [No0000A1]人体排毒时间表,别再信了

    经常可以看到有「人体排毒时间表」这样的说法,不同的媒体反复传播,大同小异.这些说法里,大多把人体的系统器官都给安排了一个特定的时段,认为在某时段是某器官的排毒时间,睡觉能排一切毒.事实上果真如此么?让 ...

  3. ElasticSearch第四步-查询详解

    ElasticSearch系列学习 ElasticSearch第一步-环境配置 ElasticSearch第二步-CRUD之Sense ElasticSearch第三步-中文分词 ElasticSea ...

  4. 关于 redis、memcache、mongoDB 的对比

    从以下几个维度,对 redis.memcache.mongoDB 做了对比. 1.性能 都比较高,性能对我们来说应该都不是瓶颈. 总体来讲,TPS 方面 redis 和 memcache 差不多,要大 ...

  5. 精通Web Analytics 2.0 (8) 第六章:使用定性数据解答”为什么“的谜团

    精通Web Analytics 2.0 : 用户中心科学与在线统计艺术 第六章:使用定性数据解答"为什么"的谜团 当我走进一家超市,我不希望员工会认出我或重新为我布置商店. 然而, ...

  6. OS命令注入中的空格

    1.bash 空格可以替换为%20.%09(tab).%2b(+) in url.{IFS} 2.Win shell 空格可以替换为%20.%09(tab).%0b.%0c.%2b(+) in url

  7. Map工具系列-07-TFS变更集提取工具

    所有cs端工具集成了一个工具面板 -打开(IE) Map工具系列-01-Map代码生成工具说明 Map工具系列-02-数据迁移工具使用说明 Map工具系列-03-代码生成BySQl工具使用说明 Map ...

  8. git 提交代码

    git config --global user.name=a_name git config --global user.email=an_email_address mkdir test cd t ...

  9. LINQ函数

    LINQ函数虽然和LINQ语句实现了同样的功能,但LINQ函数使用起来更加快捷.学过数据库的感觉LINQ语句都不难,但语句比较长. 会LINQ函数,才算会LINQ. 1.Where(),结果过滤 Li ...

  10. HTML5学习总结-番外05 移动终端适配

    一 viewport 在使用移动端设备浏览网页时,移动端浏览器是直接把整个页面放到一个虚拟的视图里来显示的,通常来说这个虚拟的视图大小会比手机屏幕大,用户可以通过手势操作来平移.缩放这个视图. 如果不 ...