Shell Necklace (dp递推改cdq分治 + fft)
首先读出题意,然后发现这是一道DP,我们可以获得递推式为

然后就知道,不行啊,时间复杂度为O(n2),然后又可以根据递推式看出这里面可以拆解成多项式乘法,但是即使用了fft,我们还需要做n次多项式乘法,时间复杂度又变成O(n2 * log n),显然不可以。然后又利用c分治思维吧问题进行拆分问题但是,前面求出来的结果对后面的结果会产生影响,所以我们使用cdq分治思想来解决这个问题,时间复杂度变为O(n * log2n)。
#include<bits/stdc++.h>
using namespace std; const double pi = acos(-1.0);
const int mod = ;
const int maxn = 4e5 + ;
int in[maxn], dp[maxn]; struct Complex{
double r,i;
Complex(double r = 0.0, double i = 0.0):r(r),i(i){};
Complex operator+(const Complex &rhs){
return Complex(r + rhs.r, i + rhs.i);
}
Complex operator-(const Complex &rhs){
return Complex(r - rhs.r, i - rhs.i);
}
Complex operator*(const Complex & rhs){
return Complex(r*rhs.r - i*rhs.i, i*rhs.r + r * rhs.i);
}
}x1[maxn],x2[maxn]; void rader(Complex *F, int len){
int j = len >> ;
for(int i = , j = len/; i < len - ; i ++){
if(i < j)swap(F[i], F[j]);
int k = len / ;
while(j >= k){
j -= k; k /= ;
}
if(j < k) j += k;
}
} void FFT(Complex *F, int len, int t){
rader(F, len);
for(int h = ; h <= len; h <<= ){
Complex wn(cos(-t**pi/h), sin(-t**pi/h));
for(int j = ; j < len; j += h){
Complex E(, );
for(int k = j; k < j + h/; k ++){
Complex u = F[k];
Complex v = E * F[k + h/];
F[k] = u + v;
F[k + h/] = u - v;
E = E * wn;
}
}
}
if(t == -)
for(int i = ; i < len; i ++)
F[i].r /= len;
} void cdq(int l, int r){
if(l == r){
dp[l] = (in[l]+dp[l])%mod;
return ;
}
int m = l + r>>;
cdq(l,m);
int len1 = r - l + ;
int len2 = m - l + ;
int len = ;while(len < (len1 + len2)) len <<= ;
for(int i = ; i < len; i ++) x1[i] = x2[i] = Complex(,);
for(int i = ; i < len2; i ++) x1[i] = Complex(dp[i + l], );
for(int i = ; i < len1; i ++) x2[i] = Complex(in[i], );
FFT(x1, len, );FFT(x2, len, ); for(int i = ; i < len; i ++) x1[i] = x1[i] * x2[i];
FFT(x1, len, -);
for(int i = m + ; i <= r; i ++) dp[i] = (dp[i] + (int)(x1[i - l].r + 0.5)) % mod;
cdq(m + , r);
} int main(){
int n;
while(~scanf("%d",&n), n){
for(int i = ; i <= n; i ++){
scanf("%d",&in[i]);
in[i] %= mod;
}
memset(dp, , sizeof(dp));
cdq(, n);
printf("%d\n", dp[n] % mod);
for(int i = ; i <= n; i ++)printf("%d ",dp[i]);printf("\n");
}
return ;
}
Shell Necklace (dp递推改cdq分治 + fft)的更多相关文章
- HDU - 5730 :Shell Necklace(CDQ分治+FFT)
Perhaps the sea‘s definition of a shell is the pearl. However, in my view, a shell necklace with n b ...
- hdu2089(数位DP 递推形式)
不要62 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- 【BZOJ3456】轩辕朗的城市规划 无向连通图计数 CDQ分治 FFT 多项式求逆 多项式ln
题解 分治FFT 设\(f_i\)为\(i\)个点组成的无向图个数,\(g_i\)为\(i\)个点组成的无向连通图个数 经过简单的推导(枚举\(1\)所在的连通块大小),有: \[ f_i=2^{\f ...
- [BZOJ 3456]城市规划(cdq分治+FFT)
[BZOJ 3456]城市规划(cdq分治+FFT) 题面 求有标号n个点无向连通图数目. 分析 设\(f(i)\)表示\(i\)个点组成的无向连通图数量,\(g(i)\)表示\(i\)个点的图的数量 ...
- HDU5730 Shell Necklace(DP + CDQ分治 + FFT)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5730 Description Perhaps the sea‘s definition of ...
- HDU 5730 Shell Necklace cdq分治+FFT
题意:一段长为 i 的项链有 a[i] 种装饰方式,问长度为n的相连共有多少种装饰方式 分析:采用dp做法,dp[i]=∑dp[j]*a[i-j]+a[i],(1<=j<=i-1) 然后对 ...
- HDU Shell Necklace CDQ分治+FFT
Shell Necklace Problem Description Perhaps the sea‘s definition of a shell is the pearl. However, in ...
- HDU 5730 Shell Necklace(CDQ分治+FFT)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5730 [题目大意] 给出一个数组w,表示不同长度的字段的权值,比如w[3]=5表示如果字段长度为3 ...
- #8 //HDU 5730 Shell Necklace(CDQ分治+FFT)
Description 给出长度分别为1~n的珠子,长度为i的珠子有a[i]种,每种珠子有无限个,问用这些珠子串成长度为n的链有多少种方案 题解: dp[i]表示组合成包含i个贝壳的项链的总方案数 转 ...
随机推荐
- Linux内核如何装载和启动一个可执行程序(转)
原文:http://www.cnblogs.com/petede/p/5351696.html 实验七:Linux内核如何装载和启动一个可执行程序 姓名:李冬辉 学号:20133201 注: 原创作品 ...
- es组合多个条件进行查询
GET /test_index/_search{ "query": { "bool": { "must": { "match&qu ...
- Docker镜像推送(push)到Docker Hub
镜像构建成功后,只要有docker环境就可以使用,但必须将镜像推送到Docker Hub上去.我们之前创建的镜像不符合Docker Hub的tag要求,因为 在Docker Hub注册的用户名是boo ...
- 导出toolStrip1中的图标
foreach (ToolStripItem c in toolStrip1.Items) { if (!(c is ToolStripButton)) continue; var btn = (To ...
- Number (int float bool complex)--》int 整型、二进制整型、八进制整型、十六进制整型
# ### Number (int float bool complex) # (1) int 整型 (正整数 0 负整数) intvar = 15 print(intvar) intvar = 0 ...
- 编译snort经验
google搜索,找个感觉挺新的版本 https://zh.osdn.net/frs/g_redir.php?m=netix&f=%2Fslackbuildsdirectlinks%2Fsno ...
- 查看手机cpu信息
adb shell getprop ro.product.cpu.abi
- js中变量提升(一个是变量,一个是函数表达式都会存在变量提升,函数声明不存在)
一.变量提升 在ES6之前,JavaScript没有块级作用域(一对花括号{}即为一个块级作用域),只有全局作用域和函数作用域.变量提升即将变量声明提升到它所在作用域的最开始的部分.上个简历的例子如: ...
- Selenium基础知识(九)验证码
关于Selenium处理验证码总结下: 1.去掉验证码(这个为了测试,去掉可能性不大) 2.万能验证码(让开发给做一个万能验证码,可能性也不大) 3.OCR光学识别,python包Python-tes ...
- 日期条控件 DateFieldControl
日期条控件 书:163 <?xml version="1.0" encoding="utf-8"?> <s:Application xmlns ...