XOR (莫队)
Time Limit: 2000 ms Memory Limit: 256 MB
Description
给定一个含有n个整数的序列 a1, a2,..., an.
定义 f(x,x) = a[x], f(x,y) = a[x] xor a[x + 1] xor ... xor a[y] (y > x).
本题设有m组询问,每组询问含有两个参数 (l, r) 。对于每组询问,你需要回答有多少个二元组 (x, y) 满足 l <= x <= y <= r 并且 f(x, y) = k.
Input
第一行有3个整数, n, m, k(1 <= n <= 100000, 1 <= m <= 100000, 0 <= k < 10^6).
第二行共有 n 个非负整数代表整个序列,每个整数均不超过 10^6.
接下来m行,每行两个整数 (li, ri), li <= ri
Output
对于每组询问,输出一行表示有多少满足上述条件的二元组。
|
Sample Input |
Sample Output |
|
5 2 1 |
2 4 |
Hint
对于10%的数据,$n, m \leq 500$
对于30%的数据,$n, m \leq 3000$
对于50%的数据,$n, m \leq 30000$
对于100%的数据,$n, m \leq 100000$
题解:
一看范围就知道是标准$n\sqrt{n}$莫队啊,是我今天感冒脑抽了想不出这么简单的处理吗......
$[l,r]$异或起来的值刚好等于$k$,维护异或前缀和$a$后,等价于判断$a_{l-1}\hat{} a_{r}$是否等于$k$。
那么用莫队在这个异或前缀和数组上爬。
维护莫队中统计每种值出现次数的数组$cnt$,$cnt_i$表示值为$i$的有多少。
这样一来,加入一位$x$对莫队的影响就是$ans+=cnt_{a[x]\hat{} k}$,删去一位对莫队的影响就是$ans-=cnt_{a[x]\hat{} k}$
当然还要维护$cnt$,加入时先统计影响,再将$cnt_{a[x]}++$;删除时先从$cnt$里抹掉:$cnt_{a[x]}--$,再统计影响。
Tips:
1.原本$[l,r]$的询问,转换后最大要考虑到$[l-1,r]$,所以把询问的左端点都-1.
2.异或后值可能大于1000000,需多开一倍。
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long ll;
const int N=;
int n,m,k,di,a[N],cnt[];
ll now,out[N];
struct Query{
int l,r,id;
friend bool operator < (Query x,Query y){
x.l++; y.l++;
if(x.l/di!=y.l/di) return x.l/di<y.l/di;
return x.r<y.r;
}
}q[N];
void add(int x){
now+=cnt[a[x]^k];
cnt[a[x]]++;
}
void dec(int x){
cnt[a[x]]--;
now-=cnt[a[x]^k];
}
int main(){
scanf("%d%d%d",&n,&m,&k);
di=(int)sqrt(n);
for(int i=,x;i<=n;i++){
scanf("%d",&x);
a[i]=a[i-]^x;
}
for(int i=;i<=m;i++){
scanf("%d%d",&q[i].l,&q[i].r);
q[i].l--; q[i].id=i;
}
sort(q+,q++m);
int l=,r=;
cnt[a[]]=;
for(int i=;i<=m;i++){
while(r<q[i].r) add(++r);
while(r>q[i].r) dec(r--);
while(l<q[i].l) dec(l++);
while(l>q[i].l) add(--l);
out[q[i].id]=now;
}
for(int i=;i<=m;i++) printf("%lld\n",out[i]);
return ;
}
奇妙代码
XOR (莫队)的更多相关文章
- Codeforces617 E . XOR and Favorite Number(莫队算法)
XOR and Favorite Number time limit per test: 4 seconds memory limit per test: 256 megabytes input: s ...
- Codeforeces 617E XOR and Favorite Number(莫队+小技巧)
E. XOR and Favorite Number time limit per test 4 seconds memory limit per test 256 megabytes input s ...
- Codeforces Round #340 (Div. 2) E. XOR and Favorite Number 莫队算法
E. XOR and Favorite Number 题目连接: http://www.codeforces.com/contest/617/problem/E Descriptionww.co Bo ...
- XOR and Favorite Number(莫队算法+分块)
E. XOR and Favorite Number time limit per test 4 seconds memory limit per test 256 megabytes input s ...
- CodeForces - 617E XOR and Favorite Number 莫队算法
https://vjudge.net/problem/CodeForces-617E 题意,给你n个数ax,m个询问Ly,Ry, 问LR内有几对i,j,使得ai^...^ aj =k. 题解:第一道 ...
- CODEFORCES 340 XOR and Favorite Number 莫队模板题
原来我直接学的是假的莫队 原题: Bob has a favorite number k and ai of length n. Now he asks you to answer m queries ...
- XOR Queries(莫队+trie)
题目链接: XOR Queries 给出一个长度为nn的数组CC,回答mm个形式为(L, R, A, B)(L,R,A,B)的询问,含义为存在多少个不同的数组下标k \in [L, R]k∈[L,R] ...
- Codeforces Round #340 (Div. 2) E. XOR and Favorite Number 【莫队算法 + 异或和前缀和的巧妙】
任意门:http://codeforces.com/problemset/problem/617/E E. XOR and Favorite Number time limit per test 4 ...
- codeforces 617E E. XOR and Favorite Number(莫队算法)
题目链接: E. XOR and Favorite Number time limit per test 4 seconds memory limit per test 256 megabytes i ...
随机推荐
- python初识-day2
1.模块初识 python中的库包括标准库和第三方库,需要使用时可直接导入,导入格式为"import 库模块",例如: import sys #sys为python的标准库 pr ...
- 流API--分组和分片
分组和分片 对具有相同特性的值进行分组时一个很常见的任务,我们可以直接使用groupingBy来进行分组. 当分类函数是一个predicate函数时,流会被分成2组列表,一组返回true,一组返回fa ...
- springMVC中@RequestParam和@RequestBody注解的用法
springMVC中@RequestParam注解用在Controller层获解析.提取参数,当然你也可以用request.getParameter("name")来获取参数,而@ ...
- 00_HTML入门第一天
HTML入门 body标记的常见属性:bgcolor 设置背景颜色:text 设置文本颜色:link 设置链接颜色:vlink 设置已经访问了的链接颜色:alink 正在点击的链接颜色: meta是单 ...
- zabbix监控的基础概念、工作原理及架构
一.什么是zabbix及优缺点(对比cacti和nagios) Zabbix能监视各种网络参数,保证服务器系统的安全运营:并提供灵活的通知机制以让系统管理员快速定位/解决存在的各种问题.是一个基于WE ...
- 面试中的DNS
DNS 当DNS客户机需要在程序中使用名称时,它会查询DNS服务器来解析该名称.客户机发送的每条查询信息包括三条信息:指定的DNS域名,指定的查询类型,DNS域名的指定类别. DNS基于UDP服务,端 ...
- Python学习笔记(三): 收集参数
如下代码: >>>def print_params(title,*params) print title print params >>>print_params( ...
- pytho字符串处理内置方法一览表
序号 方法及描述 1 capitalize()将字符串的第一个字符转换为大写 2 center(width, fillchar) 返回一个指定的宽度 width 居中的字符串,fillchar 为填充 ...
- vsftp 的安装及配置
安装vsftpd 直接用 yum安装,方便的很 yum -y install vsftpd #进入vsftpd目录cd /etc/vsftpd/ #Create The Virtual Users D ...
- BZOJ 2337: [HNOI2011]XOR和路径 [高斯消元 概率DP]
2337: [HNOI2011]XOR和路径 题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和 这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间 ...