keras04 GAN simple
reference:
GAN 讲解
https://blog.csdn.net/u010900574/article/details/53427544
命令行解析
https://blog.csdn.net/qq_24193303/article/details/80810892
命令行解析的坑
https://blog.csdn.net/qq_25964837/article/details/79077504
注意其内部参数
from __future__ import print_function
from keras.preprocessing.image import load_img, save_img, img_to_array
import numpy as np
from scipy.optimize import fmin_l_bfgs_b
import time
import argparse from keras.applications import vgg19
from keras import backend as K parser = argparse.ArgumentParser(description='Neural style transfer with Keras.')
parser.add_argument('base_image_path', metavar='base', type=str,
help='Path to the image to transform.')
parser.add_argument('style_reference_image_path', metavar='ref', type=str,
help='Path to the style reference image.')
parser.add_argument('result_prefix', metavar='res_prefix', type=str,
help='Prefix for the saved results.')
parser.add_argument('--iter', type=int, default=10, required=False,
help='Number of iterations to run.')
parser.add_argument('--content_weight', type=float, default=0.025, required=False,
help='Content weight.')
parser.add_argument('--style_weight', type=float, default=1.0, required=False,
help='Style weight.')
parser.add_argument('--tv_weight', type=float, default=1.0, required=False,
help='Total Variation weight.')
(base) C:\Users\lenovo>activate tf (tf) C:\Users\lenovo>d
'd' 不是内部或外部命令,也不是可运行的程序
或批处理文件。 (tf) C:\Users\lenovo>d: (tf) D:\>D:\adevelop\keras\GAN\keras-master\examples
'D:\adevelop\keras\GAN\keras-master\examples' 不是内部或外部命令,也不是可运行的程序
或批处理文件。 (tf) D:\>cd D:\adevelop\keras\GAN\keras-master\examples (tf) D:\adevelop\keras\GAN\keras-master\examples>python neural_style_transfer.py "D:\\adevelop\\keras\\img\\tanm.jpg" "D:\\adevelop\\keras\\img\\vonga.jpg" "D:\\adevelop\\keras\\img\\tiananmen_fangao"
Using TensorFlow backend.
Downloading data from https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5
forrtl: error (): program aborting due to control-C event
Image PC Routine Line Source
libifcoremd.dll 00007FFBBCFB94C4 Unknown Unknown Unknown
KERNELBASE.dll 00007FFC07A656FD Unknown Unknown Unknown
KERNEL32.DLL 00007FFC089C3034 Unknown Unknown Unknown
ntdll.dll 00007FFC0AF93691 Unknown Unknown Unknown (tf) D:\adevelop\keras\GAN\keras-master\examples>python neural_style_transfer.py "D:\\adevelop\\keras\\img\\tanm.jpg" "D:\\adevelop\\keras\\img\\vonga.jpg" "D:\\adevelop\\keras\\img\\tiananmen_fangao"
Using TensorFlow backend.
Downloading data from https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5
/ [==============================] - 27s 0us/step
-- ::22.912925: I tensorflow/core/platform/cpu_feature_guard.cc:] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2
-- ::23.111711: I tensorflow/core/common_runtime/gpu/gpu_device.cc:] Found device with properties:
name: GeForce GTX 6GB major: minor: memoryClockRate(GHz): 1.7845
pciBusID: ::00.0
totalMemory: .00GiB freeMemory: .97GiB
-- ::23.115455: I tensorflow/core/common_runtime/gpu/gpu_device.cc:] Adding visible gpu devices:
-- ::23.474086: I tensorflow/core/common_runtime/gpu/gpu_device.cc:] Device interconnect StreamExecutor with strength edge matrix:
-- ::23.476305: I tensorflow/core/common_runtime/gpu/gpu_device.cc:]
-- ::23.477352: I tensorflow/core/common_runtime/gpu/gpu_device.cc:] : N
-- ::23.479132: I tensorflow/core/common_runtime/gpu/gpu_device.cc:] Created TensorFlow device (/job:localhost/replica:/task:/device:GPU: with MB memory) -> physical GPU (device: , name: GeForce GTX 6GB, pci bus id: ::00.0, compute capability: 6.1)
Model loaded.
WARNING:tensorflow:Variable += will be deprecated. Use variable.assign_add if you want assignment to the variable value or 'x = x + y' if you want a new python Tensor object.
Start of iteration
Current loss value: 4708729000.0
Image saved as D:\\adevelop\\keras\\img\\tiananmen_fangao_at_iteration_0.png
Iteration completed in 12s
Start of iteration
Current loss value: 2911683000.0
Image saved as D:\\adevelop\\keras\\img\\tiananmen_fangao_at_iteration_1.png
Iteration completed in 9s
Start of iteration
Current loss value: 2555891200.0
Image saved as D:\\adevelop\\keras\\img\\tiananmen_fangao_at_iteration_2.png
Iteration completed in 9s
Start of iteration
Current loss value: 2370041300.0
Image saved as D:\\adevelop\\keras\\img\\tiananmen_fangao_at_iteration_3.png
Iteration completed in 9s
Start of iteration
Current loss value: 2268962800.0
Image saved as D:\\adevelop\\keras\\img\\tiananmen_fangao_at_iteration_4.png
Iteration completed in 9s
Start of iteration
Current loss value: 2198608600.0
Image saved as D:\\adevelop\\keras\\img\\tiananmen_fangao_at_iteration_5.png
Iteration completed in 9s
Start of iteration
Current loss value: 2155104300.0
Image saved as D:\\adevelop\\keras\\img\\tiananmen_fangao_at_iteration_6.png
Iteration completed in 9s
Start of iteration
Current loss value: 2122974200.0
Image saved as D:\\adevelop\\keras\\img\\tiananmen_fangao_at_iteration_7.png
Iteration completed in 9s
Start of iteration
Current loss value: 2096054800.0
Image saved as D:\\adevelop\\keras\\img\\tiananmen_fangao_at_iteration_8.png
Iteration completed in 9s
Start of iteration
Current loss value: 2074734200.0
Image saved as D:\\adevelop\\keras\\img\\tiananmen_fangao_at_iteration_9.png
Iteration completed in 9s (tf) D:\adevelop\keras\GAN\keras-master\examples>

keras04 GAN simple的更多相关文章
- (转) Read-through: Wasserstein GAN
Sorta Insightful Reviews Projects Archive Research About In a world where everyone has opinions, on ...
- [转]GAN论文集
really-awesome-gan A list of papers and other resources on General Adversarial (Neural) Networks. Th ...
- GAN实战笔记——第六章渐进式增长生成对抗网络(PGGAN)
渐进式增长生成对抗网络(PGGAN) 使用 TensorFlow和 TensorFlow Hub( TFHUB)构建渐进式增长生成对抗网络( Progressive GAN, PGGAN或 PROGA ...
- PHP设计模式(一)简单工厂模式 (Simple Factory For PHP)
最近天气变化无常,身为程序猿的寡人!~终究难耐天气的挑战,病倒了,果然,程序猿还需多保养自己的身体,有句话这么说:一生只有两件事能报复你:不够努力的辜负和过度消耗身体的后患.话不多说,开始吧. 一.什 ...
- Design Patterns Simplified - Part 3 (Simple Factory)【设计模式简述--第三部分(简单工厂)】
原文链接:http://www.c-sharpcorner.com/UploadFile/19b1bd/design-patterns-simplified-part3-factory/ Design ...
- WATERHAMMER: A COMPLEX PHENOMENON WITH A SIMPLE SOLUTION
开启阅读模式 WATERHAMMER A COMPLEX PHENOMENON WITH A SIMPLE SOLUTION Waterhammer is an impact load that is ...
- BZOJ 3489: A simple rmq problem
3489: A simple rmq problem Time Limit: 40 Sec Memory Limit: 600 MBSubmit: 1594 Solved: 520[Submit] ...
- Le lié à la légèreté semblait être et donc plus simple
Il est toutefois vraiment à partir www.runmasterfr.com/free-40-flyknit-2015-hommes-c-1_58_59.html de ...
- ZOJ 3686 A Simple Tree Problem
A Simple Tree Problem Time Limit: 3 Seconds Memory Limit: 65536 KB Given a rooted tree, each no ...
随机推荐
- Java相关面试题总结+答案(三)
[多线程] 35. 并行和并发有什么区别? 并行:多个处理器或多核处理器同时处理多个任务.(是真正的物理上的同时发生) 并发:多个任务在同一个 CPU 核上,按细分的时间片轮流(交替)执行,从逻辑上来 ...
- MappedByteBuffer
计算机内存管理 原文链接 https://www.cnblogs.com/guozp/p/10470431.html MMC:CPU的内存管理单元. 物理内存:即内存条的内存空间. 虚拟内存:计算机系 ...
- .NET Core TDD 前传: 编写易于测试的代码 -- 构建对象
该系列第1篇: 讲述了如何创造"缝". "缝"(seam)是需要知道的概念. 本文是第2篇, 介绍的是如何避免在构建对象时写出不易测试的代码. 本文的概念性内 ...
- Android 性能测试优质实践汇总
这两天把testerhome上的关于Android 性能测试的精品文章看了一遍,很有收获,学习到了Android 性能测试该关注的一些细节.我所说的“精品”是指对我自己有启发的文章,可以被自己运用起来 ...
- ACM:读入优化
两个简单的读入优化 int getin(){ ;; while(!isdigit(tmp=getchar()) && tmp!='-'); ,tmp=getchar(); )+(ans ...
- 带你找到五一最省的旅游路线【dijkstra算法代码实现】
算法推导过程参见[dijkstra算法推导详解] 此文为[dijkstra算法代码实现] https://www.cnblogs.com/Halburt/p/10767389.html package ...
- 西安活动 | 2019年1月13号 "拥抱开源, 又见.NET" 线下交流活动报名进行中
随着.NET Core的发布和开源,.NET又重新回到人们的视野..NET Core的下个3.0即将release,加入非常多的新功能,越来越拥抱变化,DevOps和Microservice的最佳实践 ...
- 1.2环境安装「深入浅出ASP.NET Core系列」
官网 在介绍安装环境之前,先介绍周边信息,比如微软net官网. https://www.microsoft.com/net 这个网站是学习微软技术栈比较权威的地方,包括环境下载,学习,架构,文档,社区 ...
- 为何IntelliJ IDEA比Eclipse更好
阅读本文大概需要 4.2 分钟. 本文为译文,翻译:彭博 https://www.oschina.net/news/26929 争论 有一些没有唯一正确答案的“永恒”的问题,例如,更好的是:Windo ...
- Springboot 系列(八)动态Banner与图片转字符图案的手动实现
使用过 Springboot 的对上面这个图案肯定不会陌生,Springboot 启动的同时会打印上面的图案,并带有版本号.查看官方文档可以找到关于 banner 的描述 The banner tha ...