文献中的recall rate(查全率或召回率) and precision(精度)是很重要的概念.可惜很多中文网站讲的我都稀里糊涂,只好用google查了个英文的,草翻如下:召回率和精度定义:

从一个大规模数据集合中检索文档的时,可把文档分成四组

- 系统检索到的相关文档(A)

- 系统检索到的不相关文档(B)

- 相关但是系统没有检索到的文档(C)

- 相关但是被系统检索到的文档(D)

相关

不相关

检索到

A

B

未检索到

C

D

直观的说,一个好的检索系统检索到的相关文档越多越好,不相关文档越少越好.

召回率和精度是衡量信息检索系统性能最重要的参数.

召回率R:用检索到相关文档数作为分子,所有相关文档总数作为分母,即 R=A/(A+C)

精度P:用检索到相关文档数作为分子,所有检索到的文档总数作为分母.即 P=A/(A+B).

下面举例说明召回率和精度之间的关系:

一个数据库有500个文档, 其中有50个文档符合定义的问题.系统检索到75个文档,但是只有45个符合定义的问题.

召回率 R=45/50=90%

精度 P=45/75=60%

本例中, 系统检索是比较有效的,召回率为90%. 但是结果有很大的噪音,有近一半的检索结果是不相关. 研究表明:在不牺牲精度的情况下,获得一个高召回率是很困难的.参看下图:召回率越高,精度下降的很快,而且这种趋势不是线性的.

正确率、召回率和F值是在鱼龙混杂的环境中,选出目标的重要评价指标。

不妨看看这些指标的定义先:

正确率 = 正确识别的个体总数 / 识别出的个体总数

召回率 = 正确识别的个体总数 / 测试集中存在的个体总数

F值 = 正确率 * 召回率 * 2 / (正确率 + 召回率)

不妨举这样一个例子:某池塘有1400条鲤鱼,300只虾,300只鳖。现在以捕鲤鱼为目的。Seaeagle撒一大网,逮着了700条鲤鱼,200只虾,100只鳖。那么,这些指标分别如下:

正确率 = 700 / (700 + 200 + 100) = 70%

召回率 = 700 / 1400 = 50%

F值 = 70% * 50% * 2 / (70% + 50%) = 58.3%

不妨看看如果Seaeagle把池子里的所有的鲤鱼、虾和鳖都一网打尽,这些指标又有何变化:

正确率 = 1400 / (1400 + 300 + 300) = 70%

召回率 = 1400 / 1400 = 100%

F值 = 70% * 100% * 2 / (70% + 100%) = 82.35%

由此可见,正确率是评估捕获的成果中目标成果所占得比例;召回率,顾名思义,就是从关注领域中,召回目标类别的比例;而F值,则是综合这二者指标的评估指标,用于综合反映整体的指标。

查全率(召回率)、精度(准确率)和F值的更多相关文章

  1. 召回率与准确率[ZZ]

    最近一直在做相关推荐方面的研究与应用工作,召回率与准确率这两个概念偶尔会遇到,知道意思,但是有时候要很清晰地向同学介绍则有点转不过弯来. 召回率和准确率是数据挖掘中预测.互联网中的搜索引擎等经常涉及的 ...

  2. 目标检测评价标准(mAP, 精准度(Precision), 召回率(Recall), 准确率(Accuracy),交除并(IoU))

    1. TP , FP , TN , FN定义 TP(True Positive)是正样本预测为正样本的数量,即与Ground truth区域的IoU>=threshold的预测框 FP(Fals ...

  3. 精确率、召回率、准确率与ROC曲线

    精确率表示的是预测为某类样本(例如正样本)中有多少是真正的该类样本,一般用来评价分类任务模型. 比如对于一个分类模型,预测结果为A类的所有样本中包含A0个真正的A样本,和A1个不是A样本的其他类样本, ...

  4. Recall(召回率);Precision(准确率);F1-Meature(综合评价指标);true positives;false positives;false negatives..

    转自:http://blog.csdn.net/t710smgtwoshima/article/details/8215037   Recall(召回率);Precision(准确率);F1-Meat ...

  5. 评估指标:准确率(Precision)、召回率(Recall)以及F值(F-Measure)

    为了能够更好的评价IR系统的性能,IR有一套完整的评价体系,通过评价体系可以了解不同信息系统的优劣,不同检索模型的特点,不同因素对信息检索的影响,从而对信息检索进一步优化. 由于IR的目标是在较短时间 ...

  6. 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure)

    下面简单列举几种常用的推荐系统评测指标: 1.准确率与召回率(Precision & Recall) 准确率和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量.其中精度 ...

  7. 准确率,召回率,F值,机器学习分类问题的评价指标

    下面简单列举几种常用的推荐系统评测指标: 1.准确率与召回率(Precision & Recall) 准确率和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量.其中精度 ...

  8. 准确率,召回率,F值

    下面简单列举几种常用的推荐系统评测指标: 1.准确率与召回率(Precision & Recall) 准确率和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量.其中精度 ...

  9. 推荐系统评测指标--准确率(Precision)和召回率(Recall)、F值(F-Measure)

    转自http://bookshadow.com/weblog/2014/06/10/precision-recall-f-measure/ 1,准确率和召回率是广泛应用于信息检索和统计学分类领域的两个 ...

随机推荐

  1. [BZOJ]3110 K大数查询(ZJOI2013)

    这大概是唯一一道小C重写了4次的题目. 姿势不对的树套树(Fail) → 分块(Fail) → 整体二分(Succeed) → 树套树(Succeed). 让小C写点心得静静. Description ...

  2. 谷歌开发者:看可口可乐公司是怎么玩转TensorFlow的?

    在这篇客座文章中,可口可乐公司的 Patrick Brandt 将向我们介绍他们如何使用 AI 和 TensorFlow 实现无缝式购买凭证. 可口可乐的核心忠诚度计划于 2006 年以 MyCoke ...

  3. jqGrid 使用心得

    参考: https://blog.csdn.net/u012411219/article/details/51315419 https://www.cnblogs.com/kissdodog/p/38 ...

  4. H3C S3100交换机配置VLAN和远程管理

    一.基本设置 1. console线连接成功 2. 进入系统模式 <H3C>system-view //提示符由<H3C> 变为 [H3C] 3. 更改设备名称 [H3C]sy ...

  5. 简易js进度条

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  6. mongo数据删除和游标

    数据删除 db.集合.remove(删除条件,是否只删除一个数据);默认删多条(false)true删除一条db.集合.remove({}) 删除所有元素但集合还在db.集合.drop() 删除集合 ...

  7. Luogu P3740 [HAOI2014]贴海报_线段树

    线段树版的海报 实际上这个与普通的线段树相差不大,只是貌似数据太水,暴力都可以过啊 本来以为要离散的,结果没打就A了 #include<iostream> #include<cstd ...

  8. Errors running builder 'DeploymentBuilder' on project '工程名'

    打开myEclipse就会报 Errors running builder 'DeploymentBuilder' on project '工程名' xxxNullpointException 的错误 ...

  9. PHP MySQL Where 子句

    WHERE 子句 WHERE 子句用于提取满足指定标准的的记录. 语法 SELECT column_name(s) FROM table_name WHERE column_name operator ...

  10. PHP Filter 函数

    PHP Filter 简介 PHP 过滤器用于对来自非安全来源的数据(比如用户输入)进行验证和过滤. 安装 Filter 函数是 PHP 核心的组成部分.无需安装即可使用这些函数. PHP Filte ...