查全率(召回率)、精度(准确率)和F值
文献中的recall rate(查全率或召回率) and precision(精度)是很重要的概念.可惜很多中文网站讲的我都稀里糊涂,只好用google查了个英文的,草翻如下:召回率和精度定义:
从一个大规模数据集合中检索文档的时,可把文档分成四组
- 系统检索到的相关文档(A)
- 系统检索到的不相关文档(B)
- 相关但是系统没有检索到的文档(C)
- 相关但是被系统检索到的文档(D)
|
相关 |
不相关 |
|
|
检索到 |
A |
B |
|
未检索到 |
C |
D |
直观的说,一个好的检索系统检索到的相关文档越多越好,不相关文档越少越好.
召回率和精度是衡量信息检索系统性能最重要的参数.
召回率R:用检索到相关文档数作为分子,所有相关文档总数作为分母,即 R=A/(A+C)
精度P:用检索到相关文档数作为分子,所有检索到的文档总数作为分母.即 P=A/(A+B).
下面举例说明召回率和精度之间的关系:
一个数据库有500个文档, 其中有50个文档符合定义的问题.系统检索到75个文档,但是只有45个符合定义的问题.
召回率 R=45/50=90%
精度 P=45/75=60%
本例中, 系统检索是比较有效的,召回率为90%. 但是结果有很大的噪音,有近一半的检索结果是不相关. 研究表明:在不牺牲精度的情况下,获得一个高召回率是很困难的.参看下图:召回率越高,精度下降的很快,而且这种趋势不是线性的.
正确率、召回率和F值是在鱼龙混杂的环境中,选出目标的重要评价指标。
不妨看看这些指标的定义先:
正确率 = 正确识别的个体总数 / 识别出的个体总数
召回率 = 正确识别的个体总数 / 测试集中存在的个体总数
F值 = 正确率 * 召回率 * 2 / (正确率 + 召回率)
不妨举这样一个例子:某池塘有1400条鲤鱼,300只虾,300只鳖。现在以捕鲤鱼为目的。Seaeagle撒一大网,逮着了700条鲤鱼,200只虾,100只鳖。那么,这些指标分别如下:
正确率 = 700 / (700 + 200 + 100) = 70%
召回率 = 700 / 1400 = 50%
F值 = 70% * 50% * 2 / (70% + 50%) = 58.3%
不妨看看如果Seaeagle把池子里的所有的鲤鱼、虾和鳖都一网打尽,这些指标又有何变化:
正确率 = 1400 / (1400 + 300 + 300) = 70%
召回率 = 1400 / 1400 = 100%
F值 = 70% * 100% * 2 / (70% + 100%) = 82.35%
由此可见,正确率是评估捕获的成果中目标成果所占得比例;召回率,顾名思义,就是从关注领域中,召回目标类别的比例;而F值,则是综合这二者指标的评估指标,用于综合反映整体的指标。
查全率(召回率)、精度(准确率)和F值的更多相关文章
- 召回率与准确率[ZZ]
最近一直在做相关推荐方面的研究与应用工作,召回率与准确率这两个概念偶尔会遇到,知道意思,但是有时候要很清晰地向同学介绍则有点转不过弯来. 召回率和准确率是数据挖掘中预测.互联网中的搜索引擎等经常涉及的 ...
- 目标检测评价标准(mAP, 精准度(Precision), 召回率(Recall), 准确率(Accuracy),交除并(IoU))
1. TP , FP , TN , FN定义 TP(True Positive)是正样本预测为正样本的数量,即与Ground truth区域的IoU>=threshold的预测框 FP(Fals ...
- 精确率、召回率、准确率与ROC曲线
精确率表示的是预测为某类样本(例如正样本)中有多少是真正的该类样本,一般用来评价分类任务模型. 比如对于一个分类模型,预测结果为A类的所有样本中包含A0个真正的A样本,和A1个不是A样本的其他类样本, ...
- Recall(召回率);Precision(准确率);F1-Meature(综合评价指标);true positives;false positives;false negatives..
转自:http://blog.csdn.net/t710smgtwoshima/article/details/8215037 Recall(召回率);Precision(准确率);F1-Meat ...
- 评估指标:准确率(Precision)、召回率(Recall)以及F值(F-Measure)
为了能够更好的评价IR系统的性能,IR有一套完整的评价体系,通过评价体系可以了解不同信息系统的优劣,不同检索模型的特点,不同因素对信息检索的影响,从而对信息检索进一步优化. 由于IR的目标是在较短时间 ...
- 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure)
下面简单列举几种常用的推荐系统评测指标: 1.准确率与召回率(Precision & Recall) 准确率和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量.其中精度 ...
- 准确率,召回率,F值,机器学习分类问题的评价指标
下面简单列举几种常用的推荐系统评测指标: 1.准确率与召回率(Precision & Recall) 准确率和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量.其中精度 ...
- 准确率,召回率,F值
下面简单列举几种常用的推荐系统评测指标: 1.准确率与召回率(Precision & Recall) 准确率和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量.其中精度 ...
- 推荐系统评测指标--准确率(Precision)和召回率(Recall)、F值(F-Measure)
转自http://bookshadow.com/weblog/2014/06/10/precision-recall-f-measure/ 1,准确率和召回率是广泛应用于信息检索和统计学分类领域的两个 ...
随机推荐
- [bzoj4873]寿司餐厅
来自FallDream的博客,未经允许,请勿转载,谢谢. Kiana最近喜欢到一家非常美味的寿司餐厅用餐.每天晚上,这家餐厅都会按顺序提供n种寿司,第i种寿司有一个代号ai和美味度di,i,不同种类的 ...
- 《Java技术》第一次作业
(一)学习总结 1.在java中通过Scanner类完成控制台的输入,查阅JDK帮助文档,Scanner类实现基本数据输入的方法是什么?不能只用文字描述,一定要写代码,通过具体实例加以说明. (1)使 ...
- Redis设置Key的过期时间 – EXPIRE命令
EXPIRE key seconds 为给定 key 设置生存时间,当 key 过期时(生存时间为 0 ),它会被自动删除. 操作key对生存时间的影响 生存时间可以通过使用 DEL 命令来删除整个 ...
- 详解Tomcat配置JVM参数步骤
这里向大家描述一下如何使用Tomcat配置JVM参数,Tomcat本身不能直接在计算机上运行,需要依赖于硬件基础之上的操作系统和一个Java虚拟机.您可以选择自己的需要选择不同的操作系统和对应的JDK ...
- SUSE10的虚拟机安装以及ORACLE 11g的安装
SUSE10虚拟机安装与ORACLE安装 作者:张欣橙 本文所需要的所有参数均位于文末附录中 一.SUSE10虚拟机的安装与创建 新建虚拟机安装 选择下一步 选择下一步 选择下一步 选择下一步 选择下 ...
- Luogu P2756 [网络流24题]飞行员配对方案问题_二分图匹配
二分图模板题 我用的是匈牙利 其实最大流也可以做 #include<iostream> #include<cstdio> #include<cstdlib> #in ...
- 转:window与linux互相拷贝文件
window与linux互相拷贝文件 借助 PSCP 命令可以实现文件的互拷: 1.下载pscp.exe 文件 (我的资源文件中有) 2.如果想在所有目录可以执行,请更改环境变量. w ...
- MySQL UPDATE 查询
MySQL UPDATE 查询 如果我们需要修改或更新MySQL中的数据,我们可以使用 SQL UPDATE 命令来操作.. 语法 以下是 UPDATE 命令修改 MySQL 数据表数据的通用SQL语 ...
- 网络七层OSI模型简介
0. 网络七层OSI模型(Open System Interconnection)总览: 1. 应用层 2. 表示层 :表示层的作用是使通信的应用程序能够解释交换数据的含义.这些服务包括数据压缩 ...
- 【Java 语言】Java 多线程 一 ( 线程启动 | 线程中断 )
一. 线程启动 线程启动 : -- 1. 继承 Thread 运行线程 : 重写 Thread 类的 run 方法, 然后执行该线程; -- 2. 实现 Runnable 接口, 并运行线程; -- ...