题意:要在一张网格纸上画出NOI图形,使得所占格子的权值和最大。

解:暴力DP即可...

从左往右,每个字母都可以被划分成三块,且每块都可用上下两维来表示。

于是一块一块的DP。考虑如何O(1)转移。显然只有N的中间那一块不好转移,别的都是直接转移。

N的三块的两个连接处之间,可以枚举必须持平的那个端点,另一个用前缀最值。

N第二块内部,考虑枚举后一个矩形的上边界,逐步扩展下边界。此时发现每扩展一步,可能的决策集合会增加:左边一格,下边界为刚扩展的那一格,上边界在枚举的上边界以上的所有状态。

于是对于每个下边界,预处理出上边界从上到下的一个前缀最值,加到决策集合里取max即可。

 #include <bits/stdc++.h>

 const int INF = 0x3f3f3f3f;

 #define g f[FLAG]
#define h f[FLAG ^ 1] int f[][][][], FLAG, n, m;
int s[][], p[], temp[][]; inline int getSum(int i, int l, int r) {
if(l > r) return ;
return s[r][i] - s[l - ][i];
} inline void out() {
for(int i = ; i <= m; i++) {
for(int up = ; up <= n; up++) {
for(int down = up; down <= n; down++) {
printf("%d ", g[i][up][down]);
}
}
puts("");
}
puts("");
return;
} inline void outp() {
printf("p : ");
for(int i = ; i <= m; i++) {
printf("%d ", p[i]);
}
puts("");
puts("");
return;
} int main() {
//printf("%d \n", sizeof(f) / 1048576); scanf("%d%d", &n, &m);
for(int i = ; i <= n; i++) {
for(int j = ; j <= m; j++) {
scanf("%d", &s[i][j]);
s[i][j] += s[i - ][j];
}
} FLAG = ; /// N 1
memset(g, ~0x3f, sizeof(g));
for(int i = ; i <= m; i++) {
for(int up = ; up < n; up++) {
for(int down = up + ; down <= n; down++) {
g[i][up][down] = std::max(, g[i - ][up][down]) + getSum(i, up, down);
}
}
} //out(); FLAG ^= ; /// N 1.5
memset(g, ~0x3f, sizeof(g));
for(int i = ; i <= m; i++) {
for(int up = ; up < n; up++) {
int large = -INF;
for(int down = n - ; down >= up; down--) {
large = std::max(large, h[i - ][up][down + ]);
g[i][up][down] = large + getSum(i, up, down);
}
}
} //out(); FLAG ^= ; /// N 2
//memset(g, ~0x3f, sizeof(g));
memcpy(g, h, sizeof(h));
for(int i = ; i <= m; i++) {
memset(temp, ~0x3f, sizeof(temp));
for(int down = ; down <= n; down++) {
for(int up = ; up <= down; up++) {
temp[down][up] = std::max(temp[down][up - ], std::max(g[i - ][up][down], h[i - ][up][down]));
}
}
for(int up = ; up <= n; up++) {
int large = temp[up - ][up - ];
for(int down = up; down <= n; down++) {
large = std::max(large, temp[down][up]);
g[i][up][down] = std::max(large + getSum(i, up, down), h[i][up][down]);
}
}
} //out(); FLAG ^= ; /// N 2.5
memset(g, ~0x3f, sizeof(g));
for(int i = ; i <= m; i++) {
for(int down = ; down <= n; down++) {
int large = -INF;
for(int up = down - ; up >= ; up--) {
large = std::max(large, h[i - ][up + ][down]);
g[i][up][down] = large + getSum(i, up, down);
}
}
} //out(); FLAG ^= ; /// N 3
memset(g, ~0x3f, sizeof(g));
for(int i = ; i <= m; i++) {
for(int up = ; up < n; up++) {
for(int down = up + ; down <= n; down++) {
g[i][up][down] = std::max(h[i][up][down], g[i - ][up][down] + getSum(i, up, down));
}
}
} //out(); /// get p : max of g
memset(p, ~0x3f, sizeof(p));
for(int i = ; i <= m; i++) {
p[i] = p[i - ];
for(int up = ; up <= n; up++) {
for(int down = ; down <= n; down++) {
p[i] = std::max(p[i], g[i][up][down]);
}
}
} //outp(); //out(); //printf(" O 1 \n"); FLAG ^= ; /// O 1
memset(g, ~0x3f, sizeof(g));
for(int i = ; i <= m; i++) {
for(int up = ; up < n - ; up++) {
for(int down = up + ; down <= n; down++) {
g[i][up][down] = p[i - ] + getSum(i, up, down);
}
}
} //out(); //printf(" O 2 \n"); FLAG ^= ; /// O 2
memset(g, ~0x3f, sizeof(g));
for(int i = ; i <= m; i++) {
for(int up = ; up < n - ; up++) {
for(int down = up + ; down <= n; down++) {
g[i][up][down] = std::max(h[i - ][up][down], g[i - ][up][down]) + getSum(i, up, up) + getSum(i, down, down);
}
}
} //out(); FLAG ^= ; /// O 3
memset(g, ~0x3f, sizeof(g));
for(int i = ; i <= m; i++) {
for(int up = ; up < n - ; up++) {
for(int down = up + ; down <= n; down++) {
g[i][up][down] = h[i - ][up][down] + getSum(i, up, down);
}
}
} //out(); /// get p : max of g
memset(p, ~0x3f, sizeof(p));
for(int i = ; i <= m; i++) {
p[i] = p[i - ];
for(int up = ; up < n - ; up++) {
for(int down = up + ; down <= n; down++) {
p[i] = std::max(p[i], g[i][up][down]);
}
}
} //outp(); //out(); FLAG ^= ; /// I 1
memset(g, ~0x3f, sizeof(g));
for(int i = ; i <= m; i++) {
for(int up = ; up < n - ; up++) {
for(int down = up + ; down <= n; down++) {
g[i][up][down] = std::max(p[i - ], g[i - ][up][down]) + getSum(i, up, up) + getSum(i, down, down);
}
}
} //out(); FLAG ^= ; /// I 2
memset(g, ~0x3f, sizeof(g));
for(int i = ; i <= m; i++) {
for(int up = ; up < n - ; up++) {
for(int down = up + ; down <= n; down++) {
g[i][up][down] = std::max(g[i - ][up][down], h[i - ][up][down]) + getSum(i, up, down);
}
}
} //out();
int ans = -INF; FLAG ^= ; /// I 3
memset(g, ~0x3f, sizeof(g));
for(int i = ; i <= m; i++) {
for(int up = ; up < n - ; up++) {
for(int down = up + ; down <= n; down++) {
g[i][up][down] = std::max(g[i - ][up][down], h[i - ][up][down]) + getSum(i, up, up) + getSum(i, down, down);
ans = std::max(g[i][up][down], ans);
}
}
} //out(); printf("%d\n", ans);
return ;
}

AC代码

LOJ#2668 书法家的更多相关文章

  1. BZOJ 2668 交换棋子(费用流)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2668 题意:有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子中的棋子,最终达到目标状 ...

  2. 【BZOJ】【2668】【CQOI2012】交换棋子

    网络流/费用流 跪跪跪,居然还可以这样建图…… 题解:http://www.cnblogs.com/zig-zag/archive/2013/04/21/3033485.html 考虑每个点的交换限制 ...

  3. [Noi2016]区间 BZOJ4653 洛谷P1712 Loj#2086

    额... 首先,看到这道题,第一想法就是二分答案+线段树... 兴高采烈的认为我一定能AC,之后发现n是500000... nlog^2=80%,亲测可过... 由于答案是求满足题意的最大长度-最小长 ...

  4. Loj #2192. 「SHOI2014」概率充电器

    Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...

  5. Loj #3096. 「SNOI2019」数论

    Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...

  6. Loj #3093. 「BJOI2019」光线

    Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...

  7. Loj #3089. 「BJOI2019」奥术神杖

    Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...

  8. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  9. Loj #2331. 「清华集训 2017」某位歌姬的故事

    Loj #2331. 「清华集训 2017」某位歌姬的故事 IA 是一名会唱歌的女孩子. IOI2018 就要来了,IA 决定给参赛选手们写一首歌,以表达美好的祝愿.这首歌一共有 \(n\) 个音符, ...

随机推荐

  1. 解决select2 在modal中搜索框无效的问题

    $.fn.modal.Constructor.prototype.enforceFocus = function() {};

  2. Web前端-CSS必备知识点

    Web前端-CSS必备知识点 css基本内容,类选择符,id选择符,伪类,伪元素,结构,继承,特殊性,层叠,元素分类,颜色,长度,url,文本,字体,边框,块级元素,浮动元素,内联元素,定位. 链接: ...

  3. 演示Eclipse插件实现代码提示和补全

    续上文重拾< 两周自制脚本语言 >- Eclipse插件实现语法高亮, 但仅达到了演示Eclipse本身功能的程度, 与石头语言并无直接联系. 源码库相同, 仍在同一插件. 演示效果如下: ...

  4. Android:随机生成算数四则运算简单demo(随机生成2~4组数字,进行加减乘除运算)

    首先创建一个新的Android工程,下面是页面布局: Java代码: 我们先来分析一下如何完成的步骤: 1.首先,先完成生成随机数.(包括随机生成几组数字,范围为多少的数字,四则运算符号等): 2.要 ...

  5. DVWA 黑客攻防实战(十五) 绕过内容安全策略 Content Security Policy (CSP) Bypass

    看到标题,是否有点疑惑 CPS 是什么东东.简单介绍一下就是浏览器的安全策略,如果 标签,或者是服务器中返回 HTTP 头中有 Content-Security-Policy 标签 ,浏览器会根据标签 ...

  6. TTL与非门电路分析

    TTL与非门(TTL推挽式与非门)是TTL集成逻辑门的一种,主要由三极管和二极管构成.如图(a)所示,它由输入级,中间级,输出级三部分组成.TTL与非门的优点在于输出阻抗低,带负载能力强,工作速度快. ...

  7. js清空数组的方法

    方式1:splice函数 arrayObject.splice(index,howmany,element1,.....,elementX) index:必选,规定从何处添加/删除元素. howman ...

  8. 斐波那契数列(C#)

    斐波那契数,亦称之为斐波那契数列(意大利语: Successione di Fibonacci),又称黄金分割数列.费波那西数列.费波拿契数.费氏数列,指的是这样一个数列:1.1.2.3.5.8.13 ...

  9. 算法学习之BFS、DFS入门

    算法学习之BFS.DFS入门 0x1 问题描述 迷宫的最短路径 给定一个大小为N*M的迷宫.迷宫由通道和墙壁组成,每一步可以向相邻的上下左右四格的通道移动.请求出从起点到终点所需的最小步数.如果不能到 ...

  10. 超链接标签绑定JS事件&&不加"javascript:;"导致的杯具

    很久以来,在写Html和JS时,经常会给超链接<a>标签,绑定JS事件. 我们经常看到这样的写法,<a href="javascript:;" onclick=& ...