[Luogu 3902]Increasing
Description

Input

Output

Sample Input
3
1 3 2
Sample Output
1
HINT

题解
由于题目要求我们求严格递增的数列,即:
$$A[i]>A[i-1],1<i<=N$$
我们不妨令B[i]=A[i]-i,那么我们容易得到
$$B[i]>=B[i-1],1<i<=N$$
两式是等价的。
那么我们可以将原数列处理一下,我们只需要求出$B[i]$的最长不下降子序列,把不在序列中的那些数$B[i]$都改成符合条件的数(比如说和左边最近一个在最长不下降子序列中的$B[j]$相等)就能满足题意了。
当然,我们并不需要求出具体的修改方案,我们只需要求出最长不下降的长度$K$,输出$N-K$即可。
注意:
由于数据为$10^5$显然我们要用二分优化求最长不下降子序列长度。同时由于减去了$i$,我们需要将数组初始化为极小值。
#include<map>
#include<set>
#include<ctime>
#include<cmath>
#include<queue>
#include<stack>
#include<cstdio>
#include<string>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define LL long long
#define RE register
#define IL inline
using namespace std;
const int N=1e5; int n,x;
int f[N+],maxn; IL int Dev(int x)
{
int l=,r=maxn,mid,ans;
while(l<=r)
{
mid=(l+r)>>;
if (f[mid]<=x) ans=mid,l=mid+;
else r=mid-;
}
return ans;
}
IL int Min(int a,int b) {return a<b ? a:b;} int main()
{
memset(f,,sizeof(f));
scanf("%d",&n);
for (RE int i=;i<=n;i++)
{
scanf("%d",&x);
x-=i;
int tmp=Dev(x);
if (tmp==maxn) f[++maxn]=x;
else f[tmp+]=Min(f[tmp+],x);
}
printf("%d\n",n-maxn);
return ;
}
[Luogu 3902]Increasing的更多相关文章
- [BZOJ 4403]序列统计
Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取模的结果. Input 输入第一行包含一个整数T,表示数据组 ...
- [LeetCode] Increasing Triplet Subsequence 递增的三元子序列
Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the ar ...
- [LeetCode] Longest Increasing Path in a Matrix 矩阵中的最长递增路径
Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...
- [LeetCode] Longest Increasing Subsequence 最长递增子序列
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
- git error: unable to rewind rpc post data - try increasing http.postBuffer
error: unable to rewind rpc post data - try increasing http.postBuffererror: RPC failed; curl 56 Rec ...
- 【LeetCode】Increasing Triplet Subsequence(334)
1. Description Given an unsorted array return whether an increasing subsequence of length 3 exists o ...
- [tem]Longest Increasing Subsequence(LIS)
Longest Increasing Subsequence(LIS) 一个美丽的名字 非常经典的线性结构dp [朴素]:O(n^2) d(i)=max{0,d(j) :j<i&& ...
- [LintCode] Longest Increasing Subsequence 最长递增子序列
Given a sequence of integers, find the longest increasing subsequence (LIS). You code should return ...
- LintCode-Longest Increasing Subsequence
Given a sequence of integers, find the longest increasing subsequence (LIS). You code should return ...
随机推荐
- C语言第二次作业---分支结构
一.PTA实验作业 题目1:计算分段函数[2] 1.实验代码 double x,y; scanf("%lf",&x); if(x>=0){ y=sqrt(x); } ...
- 为label或者textView添加placeHolder
Tip:使用textView的代理需要在头文件中加入: <UITextViewDelegate> h文件 @interface FeedbackViewController : UIVie ...
- decltype操作符
关于decltype操作符的说明: 1.在C++中,decltype作为操作符,用于查询表达式的数据类型.decltype在C++11标准制定时引入,主要是为泛型编程而设计,以解决泛型编程中,由于有些 ...
- 搭建vue项目环境
前言 在开发本项目之前,我对vue,react,angular等框架了解,仅限于知道它们是什么框架,他们的核心是什么,但是并没有实际使用过(angular 1.0版本用过,因为太难用,所以对这类框架都 ...
- R语言基础1
----------------------------------R语言学习与科研应用,科研作图,数据统计挖掘分析,群:719954246-------------------------- 我们将 ...
- JAVA_SE基础——35.static修饰成员函数
在Java中适用static关键字修饰的方法称为静态方法. 声明静态方法的语法格式如下: 权限修饰符 static 数据类型 方法名(){ 方法体 } 静态方法 可以使用类名直接调用 类名.方 ...
- 在thinkphp框架中使用后台传值过来的数组,在hightcart中使用数组
js的数组是和php里面数组是不一样的,所以模板文件需要先接受,然后利用Js代码转化之后再使用,接受后台的数组有几种办法 1.后台传过来的json数组,利用Js是可以接受的,然后将json数据利用js ...
- LeetCode & Q26-Remove Duplicates from Sorted Array-Easy
Descriptions: Given a sorted array, remove the duplicates in place such that each element appear onl ...
- nodejs调试总结
之前nodejs开发中最痛苦的就是调试,因为我之前开发node时使用的编辑器还没有将nodejs的调试也集成进去,所以简单对nodejs开发的调试做了点探索,nodejs本身就有调试功能,同时node ...
- 将Tomcat添加进服务启动
tomcat有解压版和安装版2种版本,安装版已经做好了将tomcat添加进服务的操作,而解压版需要我们自己来实现,应用场景主要是在服务器端需要在服务器启动时就启动tomcat. 1.首先需要配置好jd ...