Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from either end of the array followed by the player 2 and then player 1 and so on. Each time a player picks a number, that number will not be available for the next player. This continues until all the scores have been chosen. The player with the maximum score wins.

Given an array of scores, predict whether player 1 is the winner. You can assume each player plays to maximize his score.

Example 1:

Input: [1, 5, 2]
Output: False
Explanation: Initially, player 1 can choose between 1 and 2.
If he chooses 2 (or 1), then player 2 can choose from 1 (or 2) and 5. If player 2 chooses 5, then player 1 will be left with 1 (or 2).
So, final score of player 1 is 1 + 2 = 3, and player 2 is 5.
Hence, player 1 will never be the winner and you need to return False.

Example 2:

Input: [1, 5, 233, 7]
Output: True
Explanation: Player 1 first chooses 1. Then player 2 have to choose between 5 and 7. No matter which number player 2 choose, player 1 can choose 233.
Finally, player 1 has more score (234) than player 2 (12), so you need to return True representing player1 can win.

Note:

  1. 1 <= length of the array <= 20.
  2. Any scores in the given array are non-negative integers and will not exceed 10,000,000.
  3. If the scores of both players are equal, then player 1 is still the winner.

这道题给了一个小游戏,有一个数组,两个玩家轮流取数,说明了只能从开头或结尾取,问我们第一个玩家能赢吗。这道题博主想到了应该是用 Minimax 来做,由于之前有过一道这样的题 Guess Number Higher or Lower II,所以依稀记得应该要用递归的方法,而且当前玩家赢返回 true 的条件就是递归调用下一个玩家输返回 false。这里需要一个变量来标记当前是第几个玩家,还需要两个变量来分别记录两个玩家的当前数字和,在递归函数里面,如果当前数组为空了,直接比较两个玩家的当前得分即可,如果数组中只有一个数字了,根据玩家标识来将这个数字加给某个玩家并进行比较总得分。如果数组有多个数字,分别生成两个新数组,一个是去掉首元素,一个是去掉尾元素,然后根据玩家标识分别调用不同的递归,只要下一个玩家两种情况中任意一种返回 false 了,那么当前玩家就可以赢了,参见代码如下:

解法一:

class Solution {
public:
bool PredictTheWinner(vector<int>& nums) {
return canWin(nums, , , );
}
bool canWin(vector<int> nums, int sum1, int sum2, int player) {
if (nums.empty()) return sum1 >= sum2;
if (nums.size() == ) {
if (player == ) return sum1 + nums[] >= sum2;
else if (player == ) return sum2 + nums[] > sum1;
}
vector<int> va = vector<int>(nums.begin() + , nums.end());
vector<int> vb = vector<int>(nums.begin(), nums.end() - );
if (player == ) {
return !canWin(va, sum1 + nums[], sum2, ) || !canWin(vb, sum1 + nums.back(), sum2, );
} else if (player == ) {
return !canWin(va, sum1, sum2 + nums[], ) || !canWin(vb, sum1, sum2 + nums.back(), );
}
}
};

我们还可以使用 DP 加 Minimax 的方法来做,先来看递归的写法,十分的简洁。DP 数组的作用是保存中间结果,再次遇到相同情况时直接返回不用再次计算,提高了运算效率:

解法二:

class Solution {
public:
bool PredictTheWinner(vector<int>& nums) {
int n = nums.size();
vector<vector<int>> dp(n, vector<int>(n, -));
return canWin(nums, , n - , dp) >= ;
}
int canWin(vector<int>& nums, int s, int e, vector<vector<int>>& dp) {
if (dp[s][e] == -) {
dp[s][e] = (s == e) ? nums[s] : max(nums[s] - canWin(nums, s + , e, dp), nums[e] - canWin(nums, s, e - , dp));
}
return dp[s][e];
}
};

下面这种方法是 DP 加 Minimax 的迭代写法,要注意的是 DP 的更新顺序,跟以往不太一样,这种更新方法是按区间来更新的,感觉之前好像没有遇到过这种更新的方法,还蛮特别的:

解法三:

class Solution {
public:
bool PredictTheWinner(vector<int>& nums) {
int n = nums.size();
vector<vector<int>> dp(n, vector<int>(n, ));
for (int i = ; i < n; ++i) dp[i][i] = nums[i];
for (int len = ; len < n; ++len) {
for (int i = , j = len; j < n; ++i, ++j) {
dp[i][j] = max(nums[i] - dp[i + ][j], nums[j] - dp[i][j - ]);
}
}
return dp[][n - ] >= ;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/486

类似题目:

Guess Number Higher or Lower II

参考资料:

https://leetcode.com/problems/predict-the-winner/

https://leetcode.com/problems/predict-the-winner/discuss/96832/C%2B%2B-DP-solution-with-explanation

https://leetcode.com/problems/predict-the-winner/discuss/96838/Java-'1-Line'-Recursive-Solution-O(n2)-Time-and-O(n)-Space

https://leetcode.com/problems/predict-the-winner/discuss/96828/JAVA-9-lines-DP-solution-easy-to-understand-with-improvement-to-O(N)-space-complexity.

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Predict the Winner 预测赢家的更多相关文章

  1. [LeetCode] 486. Predict the Winner 预测赢家

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  2. 486 Predict the Winner 预测赢家

    给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端拿取分数,然后玩家1拿,…….每次一个玩家只能拿取一个分数,分数被拿取之后不再可取.直到没有剩余分数 ...

  3. LeetCode Predict the Winner

    原题链接在这里:https://leetcode.com/problems/predict-the-winner/description/ 题目: Given an array of scores t ...

  4. Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner)

    Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner) 给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端 ...

  5. 【LeetCode】486. Predict the Winner 解题报告(Python)

    [LeetCode]486. Predict the Winner 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博客: ht ...

  6. LN : leetcode 486 Predict the Winner

    lc 486 Predict the Winner 486 Predict the Winner Given an array of scores that are non-negative inte ...

  7. Java实现 LeetCode 486 预测赢家

    486. 预测赢家 给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端拿取分数,然后玩家1拿,--.每次一个玩家只能拿取一个分数,分数被拿取之后不再可 ...

  8. LC 486. Predict the Winner

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  9. [Swift]LeetCode486. 预测赢家 | Predict the Winner

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

随机推荐

  1. HA集群heartbeat配置--Nginx

    HA即(high available)高可用,又被叫做双机热备,用于关键性业务.简单理解就是,两台机器A和B,正常是A提供服务,B待命限制,当A宕机或服务宕掉,会切换至B机器继续提供服务.常用实现高可 ...

  2. APK Multi-Tool强大的APK反编译工具终极教程

    一.APK Multi-Tool介绍    APK Multi-Tool 是APK Manager的升级版,是一个强大的APK反编译工具,集多种功能于一身,是居家必备.做ROM必选的工具!    这是 ...

  3. python PIL模块学习

    PIL PIL:Python Imaging Library.对于图像识别,大量的工作在于图像的处理,处理效果好,那么才能很好地识别,因此,良好的图像处理是识别的基础. PIL安装 安装推荐别人的吧, ...

  4. lua精灵移除报对象非法

    function addLeftCard(isVisible) if self.left_CardSprite == nil then self.left_CardSprite = cc.Sprite ...

  5. Flash Builder4.7安装破解

    引用自CSDN博客,日后我会上传FlashBuilder到百度网盘谢谢 http://bbs.csdn.net/topics/391036327

  6. Spring基于注解开发异常

    基于注解开发: 一开始:用的jar包: 百度查到: 导入aop包: 没用 有的说: Spring版本和jdk版本不匹配 于是我换成了4.0版本 导入的jar包: 还是报错. 解决办法:添加spring ...

  7. Beta冲刺第三天

    一.昨天的困难 没有困难. 二.今天进度 1.林洋洋:修改权限相关的资源表示,修复flex布局排版高度问题,修复文件更新问题,去除登录页面的默认账号密码,服务器部署. 2.黄腾达:修复日程首次执行时间 ...

  8. Beta版本展示博客

    1 团队介绍 团队组成: 齐爽爽(258)个人博客:http://www.cnblogs.com/shuangshuangblog/ 马帅(248)个人博客:http://www.cnblogs.co ...

  9. 每日冲刺报告-Day3

    敏捷冲刺每日报告--Day3 情况简介 今天的任务是把json处理函数加入到爬虫中,把搜索到的结果存到json文件里去. 任务进度 赵坤:在爬虫中加入了json处理的代码,解决了在控制台打印中文列表/ ...

  10. 【iOS】Swift GCD-下

    欢迎来到本GCD教程的第二同时也是最终部分! 在第一部分中,你学到了并发,线程以及GCD的工作原理.通过使用dispatch_barrrier和dispatch_sync,你做到了让PhotoMana ...