Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from either end of the array followed by the player 2 and then player 1 and so on. Each time a player picks a number, that number will not be available for the next player. This continues until all the scores have been chosen. The player with the maximum score wins.

Given an array of scores, predict whether player 1 is the winner. You can assume each player plays to maximize his score.

Example 1:

Input: [1, 5, 2]
Output: False
Explanation: Initially, player 1 can choose between 1 and 2.
If he chooses 2 (or 1), then player 2 can choose from 1 (or 2) and 5. If player 2 chooses 5, then player 1 will be left with 1 (or 2).
So, final score of player 1 is 1 + 2 = 3, and player 2 is 5.
Hence, player 1 will never be the winner and you need to return False.

Example 2:

Input: [1, 5, 233, 7]
Output: True
Explanation: Player 1 first chooses 1. Then player 2 have to choose between 5 and 7. No matter which number player 2 choose, player 1 can choose 233.
Finally, player 1 has more score (234) than player 2 (12), so you need to return True representing player1 can win.

Note:

  1. 1 <= length of the array <= 20.
  2. Any scores in the given array are non-negative integers and will not exceed 10,000,000.
  3. If the scores of both players are equal, then player 1 is still the winner.

这道题给了一个小游戏,有一个数组,两个玩家轮流取数,说明了只能从开头或结尾取,问我们第一个玩家能赢吗。这道题博主想到了应该是用 Minimax 来做,由于之前有过一道这样的题 Guess Number Higher or Lower II,所以依稀记得应该要用递归的方法,而且当前玩家赢返回 true 的条件就是递归调用下一个玩家输返回 false。这里需要一个变量来标记当前是第几个玩家,还需要两个变量来分别记录两个玩家的当前数字和,在递归函数里面,如果当前数组为空了,直接比较两个玩家的当前得分即可,如果数组中只有一个数字了,根据玩家标识来将这个数字加给某个玩家并进行比较总得分。如果数组有多个数字,分别生成两个新数组,一个是去掉首元素,一个是去掉尾元素,然后根据玩家标识分别调用不同的递归,只要下一个玩家两种情况中任意一种返回 false 了,那么当前玩家就可以赢了,参见代码如下:

解法一:

class Solution {
public:
bool PredictTheWinner(vector<int>& nums) {
return canWin(nums, , , );
}
bool canWin(vector<int> nums, int sum1, int sum2, int player) {
if (nums.empty()) return sum1 >= sum2;
if (nums.size() == ) {
if (player == ) return sum1 + nums[] >= sum2;
else if (player == ) return sum2 + nums[] > sum1;
}
vector<int> va = vector<int>(nums.begin() + , nums.end());
vector<int> vb = vector<int>(nums.begin(), nums.end() - );
if (player == ) {
return !canWin(va, sum1 + nums[], sum2, ) || !canWin(vb, sum1 + nums.back(), sum2, );
} else if (player == ) {
return !canWin(va, sum1, sum2 + nums[], ) || !canWin(vb, sum1, sum2 + nums.back(), );
}
}
};

我们还可以使用 DP 加 Minimax 的方法来做,先来看递归的写法,十分的简洁。DP 数组的作用是保存中间结果,再次遇到相同情况时直接返回不用再次计算,提高了运算效率:

解法二:

class Solution {
public:
bool PredictTheWinner(vector<int>& nums) {
int n = nums.size();
vector<vector<int>> dp(n, vector<int>(n, -));
return canWin(nums, , n - , dp) >= ;
}
int canWin(vector<int>& nums, int s, int e, vector<vector<int>>& dp) {
if (dp[s][e] == -) {
dp[s][e] = (s == e) ? nums[s] : max(nums[s] - canWin(nums, s + , e, dp), nums[e] - canWin(nums, s, e - , dp));
}
return dp[s][e];
}
};

下面这种方法是 DP 加 Minimax 的迭代写法,要注意的是 DP 的更新顺序,跟以往不太一样,这种更新方法是按区间来更新的,感觉之前好像没有遇到过这种更新的方法,还蛮特别的:

解法三:

class Solution {
public:
bool PredictTheWinner(vector<int>& nums) {
int n = nums.size();
vector<vector<int>> dp(n, vector<int>(n, ));
for (int i = ; i < n; ++i) dp[i][i] = nums[i];
for (int len = ; len < n; ++len) {
for (int i = , j = len; j < n; ++i, ++j) {
dp[i][j] = max(nums[i] - dp[i + ][j], nums[j] - dp[i][j - ]);
}
}
return dp[][n - ] >= ;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/486

类似题目:

Guess Number Higher or Lower II

参考资料:

https://leetcode.com/problems/predict-the-winner/

https://leetcode.com/problems/predict-the-winner/discuss/96832/C%2B%2B-DP-solution-with-explanation

https://leetcode.com/problems/predict-the-winner/discuss/96838/Java-'1-Line'-Recursive-Solution-O(n2)-Time-and-O(n)-Space

https://leetcode.com/problems/predict-the-winner/discuss/96828/JAVA-9-lines-DP-solution-easy-to-understand-with-improvement-to-O(N)-space-complexity.

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Predict the Winner 预测赢家的更多相关文章

  1. [LeetCode] 486. Predict the Winner 预测赢家

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  2. 486 Predict the Winner 预测赢家

    给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端拿取分数,然后玩家1拿,…….每次一个玩家只能拿取一个分数,分数被拿取之后不再可取.直到没有剩余分数 ...

  3. LeetCode Predict the Winner

    原题链接在这里:https://leetcode.com/problems/predict-the-winner/description/ 题目: Given an array of scores t ...

  4. Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner)

    Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner) 给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端 ...

  5. 【LeetCode】486. Predict the Winner 解题报告(Python)

    [LeetCode]486. Predict the Winner 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博客: ht ...

  6. LN : leetcode 486 Predict the Winner

    lc 486 Predict the Winner 486 Predict the Winner Given an array of scores that are non-negative inte ...

  7. Java实现 LeetCode 486 预测赢家

    486. 预测赢家 给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端拿取分数,然后玩家1拿,--.每次一个玩家只能拿取一个分数,分数被拿取之后不再可 ...

  8. LC 486. Predict the Winner

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  9. [Swift]LeetCode486. 预测赢家 | Predict the Winner

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

随机推荐

  1. Java的HelloWorld程序

    Java的HelloWorld程序 1.新建文本文档,编写HelloWorld程序,最后保存时记得保存成.java格式 2.在D盘新建一个HelloJava文件夹用于保存java程序 3.使用WIN+ ...

  2. 【作业】HansBug的前三次OO作业分析与小结

    OO课程目前已经进行了三次的作业,容我在本文中做一点微小的工作. 第一次作业 第一次作业由于难度不大,所以笔者程序实际上写的也比较随意一些.(点击就送指导书~) 类图 程序的大致结构如下: 代码分析 ...

  3. 一句话了解JAVA与大数据之间的关系

    大数据无疑是目前IT领域的最受关注的热词之一.几乎凡事都要挂上点大数据,否则就显得你OUT了.如果再找一个可以跟大数据并驾齐驱的IT热词,JAVA无疑是跟大数据并驾齐驱的一个词语.很多人在提到大数据的 ...

  4. python之路--day15---软件开发目录规范

    软件开发目录规范 bin--启动文件 conf--配置文件 core--核心代码 db--数据文件 lib--常用功能代码 log--日志文件 readme--软件介绍

  5. 码农、黑客和2B程序员之间的区别

    码农: 黑客: 2B程序员: 求2的32次方: 码农: System.out.println(Math.pow(2, 32)); 黑客: System.out.println(1L<<32 ...

  6. STM32读取温湿度传感器DHT11和DHT21(AM2301)系列问题

    1.DHT11和DHT21传感器 这两种传感器都是奥松公司的产品,具体的传感器说明书在其官网上有(www.aosong.com). DHT11 数字温湿度传感器是一款含有已校准数字信号输出的温湿度复合 ...

  7. python全栈开发-re模块(正则表达式)应用(字符串的处理)

    一.概述 就其本质而言,正则表达式(或 RE)是一种小型的.高度专业化的编程语言,要讲他的具体用法要讲一本书!它内嵌在Python中,并通过 re 模块实现.你可以为想要匹配的相应字符串集指定规则:该 ...

  8. tomcat 修改默认字符集

    找到connector节点,插入 disableUploadTimeout="true" useBodyEncodingForURI="true" URIEnc ...

  9. 新概念英语(1-129)Seventy miles an hour

    Lesson 129 Seventy miles an hour 时速70英里 Listen to the tape then answer this question. What does Ann ...

  10. 新概念英语(1-1)Excuse me!

    Excuse me!Whose handbag is it? A:Excuse me! B:Yes? A:Is this your handbag? B:Pardon? A:Is this your ...