一、前述

鲁棒性调优就是让模型有更好的泛化能力和推广力。

二、具体原理

1、背景

第一个更好,因为当把测试集带入到这个模型里去。如果测试集本来是100,带入的时候变成101,则第二个模型结果偏差很大,而第一个模型偏差不是很大。

2、目的

鲁棒性就是为了让w参数也就是模型变小,但不是很小。所以引出了 L1和L2正则。

 L1和L2的使用就是让w参数减小的使用就是让w参数减小。

L1正则,L2正则的出现原因是为了推广模型的泛化能力。相当于一个惩罚系数。

3、具体使用

L1正则:Lasso Regression

L2正则:Ridge Regression

总结:

经验值 MSE前系数为1 ,L1 , L2正则前面系数一般为0.4~0.5 更看重的是准确性。

L2正则会整体的把w变小。

L1正则会倾向于使得w要么取1,要么取0 ,稀疏矩阵 ,可以达到降维的角度。

ElasticNet函数(把L1正则和L2正则联合一起):

总结:

1.默认情况下选用L2正则。

2.如若认为少数特征有用,可以用L1正则。

3.如若认为少数特征有用,但特征数大于样本数,则选择ElasticNet函数。

4、在保证正确率的情况下加上正则。

5、如果把lamda设置成0,就只看准确率。

6、如果把lamda设置大些,就看中推广能力。

7、L1倾向于使得w要么取1,要么取0 稀疏编码 可以降维

8、L2倾向于使得w整体偏小 岭回归 首选

 4、图示

左边是L1正则+基本损失函数

右边是L2正则+基本损失函数

中间部分是圆心,损失函数最小,与正则函数相交,则既要满足基本函数,也要满足L1,L2正则,则损失函数增大了。

w1,w2等等与基本函数相交,则w1,w2都在[0,1]之间。

三、代码演示

代码一:L1正则

# L1正则
import numpy as np
from sklearn.linear_model import Lasso
from sklearn.linear_model import SGDRegressor X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1) lasso_reg = Lasso(alpha=0.15)
lasso_reg.fit(X, y)
print(lasso_reg.predict(1.5)) sgd_reg = SGDRegressor(penalty='l1')
sgd_reg.fit(X, y.ravel())
print(sgd_reg.predict(1.5))

代码二:L2正则

# L2正则
import numpy as np
from sklearn.linear_model import Ridge
from sklearn.linear_model import SGDRegressor X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1) #两种方式第一种岭回归
ridge_reg = Ridge(alpha=1, solver='auto')
ridge_reg.fit(X, y)
print(ridge_reg.predict(1.5))#预测1.5的值
#第二种 使用随机梯度下降中L2正则
sgd_reg = SGDRegressor(penalty='l2')
sgd_reg.fit(X, y.ravel())
print(sgd_reg.predict(1.5))

代码三:Elastic_Net函数

# elastic_net函数
import numpy as np
from sklearn.linear_model import ElasticNet
from sklearn.linear_model import SGDRegressor X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)
#两种方式实现Elastic_net
elastic_net = ElasticNet(alpha=0.1, l1_ratio=0.5)
elastic_net.fit(X, y)
print(elastic_net.predict(1.5)) sgd_reg = SGDRegressor(penalty='elasticnet')
sgd_reg.fit(X, y.ravel())
print(sgd_reg.predict(1.5))

【机器学习】--鲁棒性调优之L1正则,L2正则的更多相关文章

  1. 大白话5分钟带你走进人工智能-第十四节过拟合解决手段L1和L2正则

                                                                               第十四节过拟合解决手段L1和L2正则 第十三节中, ...

  2. 大白话5分钟带你走进人工智能-第十五节L1和L2正则几何解释和Ridge,Lasso,Elastic Net回归

    第十五节L1和L2正则几何解释和Ridge,Lasso,Elastic Net回归 上一节中我们讲解了L1和L2正则的概念,知道了L1和L2都会使不重要的维度权重下降得多,重要的维度权重下降得少,引入 ...

  3. 机器学习:模型泛化(L1、L2 和弹性网络)

    一.岭回归和 LASSO 回归的推导过程 1)岭回归和LASSO回归都是解决模型训练过程中的过拟合问题 具体操作:在原始的损失函数后添加正则项,来尽量的减小模型学习到的 θ 的大小,使得模型的泛化能力 ...

  4. L1与L2正则(转)

    概念: L0范数表示向量中非零元素的个数:NP问题,但可以用L1近似代替. L1范数表示向量中每个元素绝对值的和: L1范数的解通常是稀疏性的,倾向于选择:1. 数目较少的一些非常大的值  2. 数目 ...

  5. 机器学习中规范化项:L1和L2

    规范化(Regularization) 机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1-norm和ℓ2-norm,中文称作L1正则化和L2正则化,或者L ...

  6. 【笔记】简谈L1正则项L2正则和弹性网络

    L1,L2,以及弹性网络 前情提要: 模型泛化与岭回归与LASSO 正则 ridge和lasso的后面添加的式子的格式上其实和MSE,MAE,以及欧拉距离和曼哈顿距离是非常像的 虽然应用场景不同,但是 ...

  7. L1和L2正则

    https://blog.csdn.net/jinping_shi/article/details/52433975

  8. 【机器学习】--线性回归中L1正则和L2正则

    一.前述 L1正则,L2正则的出现原因是为了推广模型的泛化能力.相当于一个惩罚系数. 二.原理 L1正则:Lasso Regression L2正则:Ridge Regression 总结: 经验值 ...

  9. 机器学习(二十三)— L0、L1、L2正则化区别

    1.概念  L0正则化的值是模型参数中非零参数的个数. L1正则化表示各个参数绝对值之和. L2正则化标识各个参数的平方的和的开方值. 2.问题  1)实现参数的稀疏有什么好处吗? 一个好处是可以简化 ...

随机推荐

  1. node.js面向对象实现(二)继承

    http://blog.sina.com.cn/s/blog_b5a53f2e0101nrdi.html 继承是面向对象中非常重要的一个概念,那么在Node.js中如何实现继承呢? node.js在u ...

  2. canvas绘制形状

    栅格 之前简单模板中有个宽/高150px的canvas元素.如下图所示,canvas元素默认被网格所覆盖.通常来说网格中的一个单元相当于canvas元素中的一像素.栅格的起点为左上角(坐标为(0,0) ...

  3. python之@property

    在绑定属性时,如果我们直接把属性暴露出去,虽然写起来很简单,但是,没办法检查参数,导致可以把成绩随便改: s = Student() s.score = 9999 这显然不合逻辑.为了限制score的 ...

  4. PHP引用符&的用法举例

    php的引用就是在变量或者函数.对象等前面加上&符号.在PHP 中引用的意思是:不同的名字访问同一个变量内容.与C语言中的指针是有差别的,C语言中的指针里面存储的是变量的内容在内存中存放的地址 ...

  5. java编程思想-第13章-某些练习题

    . 匹配任意一个字符 * 表示匹配0个或多个前面这个字符 + 表示1个或多个前面这个字符 ? 表示0个或1个前面这个字符 ^ 表示一行的开始 ^[a-zA-Z] :表示开头是a-z或者A-Z [^0- ...

  6. util.go

    packagesego import(     "bytes"     "fmt" ) //输出分词结果为字符串 // //有两种输出模式,以"中华人 ...

  7. BZOJ_3011_[Usaco2012 Dec]Running Away From the Barn _可并堆

    BZOJ_3011_[Usaco2012 Dec]Running Away From the Barn _可并堆 Description 给出以1号点为根的一棵有根树,问每个点的子树中与它距离小于l的 ...

  8. 最短路 BZOJ3694 树链剖分+线段树

    分析: 树剖裸题,[Usaco2009 Jan]安全路经Travel 的简化版 剖开最短路树,遍历每一条没在最短路树上的边. 这种情况下,有且仅有u到v路径上,出来lca之外的点能够通过这条边到达,并 ...

  9. 带你了解SDL

    SDL(英语:Simple DirectMedia Layer)是一套开放源代码的跨平台多媒体开发库,使用C语言写成.SDL提供了数种控制图像.声音.输出入的函数,让开发者只要用相同或是相似的代码就可 ...

  10. go语言调度器源代码情景分析之五:汇编指令

    本文是<go调度器源代码情景分析>系列 第一章 预备知识的第4小节. 汇编语言是每位后端程序员都应该掌握的一门语言,因为学会了汇编语言,不管是对我们调试程序还是研究与理解计算机底层的一些运 ...