#include<opencv2\opencv.hpp>
#include<iostream> using namespace cv;
using namespace std; bool enlargedImage(Mat &src, float k1, float k2);//k1,k2表示放大的倍数 void main()
{
Mat srcImage = imread("flower.png");
float k1 = 1.2, k2 = 2.5;
enlargedImage(srcImage, k1, k2);
} bool enlargedImage(Mat &src, float k1, float k2)
{
int height, width, theight, twidth;
int ia, ja;//新的坐标
height = src.rows;//图像的高
width = src.cols;//图像的宽
theight = round(height*k1);//扩大后图像的高
cout << theight << endl;
twidth = round(width*k2);//扩大后图像的宽
cout << twidth << endl;
Mat dstImage(theight, twidth, src.type(), Scalar(0));
//对得到的新图片进行填充 for (int i = 0; i < height; i++)
{
for (int j = 0; j < width - 1; j++)
{ ia = round(i*k1);
ja = round(j*k2);
//如果位于四个顶角
if (ia == 0 && ja == 0)//左顶角
{
dstImage.at<Vec3b>(ia, ja)[0] = src.at<Vec3b>(i, j)[0];
dstImage.at<Vec3b>(ia, ja)[1] = src.at<Vec3b>(i, j)[1];
dstImage.at<Vec3b>(ia, ja)[2] = src.at<Vec3b>(i, j)[2];
}
else if (ia == theight - 1 && ja == twidth - 1)//左下角
{
dstImage.at<Vec3b>(ia, ja)[0] = src.at<Vec3b>(i, j)[0];
dstImage.at<Vec3b>(ia, ja)[1] = src.at<Vec3b>(i, j)[1];
dstImage.at<Vec3b>(ia, ja)[2] = src.at<Vec3b>(i, j)[2];
}
else if (ia == 0 && ja == twidth - 1)//右顶角
{
dstImage.at<Vec3b>(ia, ja)[0] = src.at<Vec3b>(i, j)[0];
dstImage.at<Vec3b>(ia, ja)[1] = src.at<Vec3b>(i, j)[1];
dstImage.at<Vec3b>(ia, ja)[2] = src.at<Vec3b>(i, j)[2];
}
else if (ia == theight - 1 && ja == twidth - 1)//右下角
{
dstImage.at<Vec3b>(ia, ja)[0] = src.at<Vec3b>(i, j)[0];
dstImage.at<Vec3b>(ia, ja)[1] = src.at<Vec3b>(i, j)[1];
dstImage.at<Vec3b>(ia, ja)[2] = src.at<Vec3b>(i, j)[2];
}
else if (ja == twidth - 1)//第三种情况,最右边
{
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, ja)[0] = src.at<Vec3b>(i, j)[0];
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, ja)[1] = src.at<Vec3b>(i, j)[1];
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, ja)[2] = src.at<Vec3b>(i, j)[2];
}
else if (ia == 0)//第一种情况,最上面
{
dstImage.at<Vec3b>(ia, round((j - 1)*k2) + 1)[0] = src.at<Vec3b>(i, j)[0];
dstImage.at<Vec3b>(ia, round((j - 1)*k2) + 1)[1] = src.at<Vec3b>(i, j)[1];
dstImage.at<Vec3b>(ia, round((j - 1)*k2) + 1)[2] = src.at<Vec3b>(i, j)[2];
}
else if (ja == 0)//第二种情况,最左边
{
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, ja)[0] = src.at<Vec3b>(i, j)[0];
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, ja)[1] = src.at<Vec3b>(i, j)[1];
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, ja)[2] = src.at<Vec3b>(i, j)[2];
} else if (ia == theight - 1)//第四种情况,最下面
{
dstImage.at<Vec3b>(ia, round((j - 1)*k2) + 1)[0] = src.at<Vec3b>(i, j)[0];
dstImage.at<Vec3b>(ia, round((j - 1)*k2) + 1)[1] = src.at<Vec3b>(i, j)[1];
dstImage.at<Vec3b>(ia, round((j - 1)*k2) + 1)[2] = src.at<Vec3b>(i, j)[2];
}
//最后一种情况,位于中间的,将值赋给左上角的值
else
{
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, round((j - 1)*k2) + 1)[0] = src.at<Vec3b>(i, j)[0];
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, round((j - 1)*k2) + 1)[1] = src.at<Vec3b>(i, j)[1];
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, round((j - 1)*k2) + 1)[2] = src.at<Vec3b>(i, j)[2];
}
}
}
for (int i = 0; i < height; i++)
{
//单独考虑最右边
int j = width - 1;
ia = round(i*k1);
ja = round(j*k2);
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, ja + 1)[0] = src.at<Vec3b>(i, j)[0];
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, ja + 1)[1] = src.at<Vec3b>(i, j)[1];
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, ja + 1)[2] = src.at<Vec3b>(i, j)[2]; } int a1, a2, b1, b2;//用来表示单线性插值中的上下左右中不为0的坐标
//利用单线性进行了行插值
for (int i = 0; i < theight; i++)
{
for (int j = 0; j < twidth; j++)
{
//首先考虑的满足单线性插值的 if (dstImage.at<Vec3b>(i, 0)[0] == 0 && dstImage.at<Vec3b>(i, 0)[1] == 0 && dstImage.at<Vec3b>(i, 0)[2] == 0)
{
continue;
} if (dstImage.at<Vec3b>(i, j)[0] == 0 && dstImage.at<Vec3b>(i, j)[1] == 0 && dstImage.at<Vec3b>(i, j)[2] == 0&& j>0 && j < twidth)
{
b1 = j - 1;
b2 = j + 1; while (dstImage.at<Vec3b>(i, b1)[0] == 0 && dstImage.at<Vec3b>(i, b1)[1] == 0 && dstImage.at<Vec3b>(i, b1)[2] == 0 && b1 >= 0)
{
b1--;
} while (dstImage.at<Vec3b>(i, b2)[0] == 0 && dstImage.at<Vec3b>(i, b2)[1] == 0 && dstImage.at<Vec3b>(i, b2)[2] == 0 && b2 <twidth)
{
b2++;
}
int sfrg0 = floor(((j - b1)*1.0 / (b2 - b1))*dstImage.at<Vec3b>(i, b2)[0] + ((b2 - j)*1.0 / (b2 - b1))*dstImage.at<Vec3b>(i, b1)[0]);
int sfrg1 = floor(((j - b1)*1.0 / (b2 - b1))*dstImage.at<Vec3b>(i, b2)[1] + ((b2 - j)*1.0 / (b2 - b1))*dstImage.at<Vec3b>(i, b1)[1]);
int sfrg2 = floor(((j - b1)*1.0 / (b2 - b1))*dstImage.at<Vec3b>(i, b2)[2] + ((b2 - j)*1.0 / (b2 - b1))*dstImage.at<Vec3b>(i, b1)[2]);
dstImage.at<Vec3b>(i, j)[0] = saturate_cast<uchar>(sfrg0);
dstImage.at<Vec3b>(i, j)[1] = saturate_cast<uchar>(sfrg1);
dstImage.at<Vec3b>(i, j)[2] = saturate_cast<uchar>(sfrg2); }
}
}
//利用单线性对列进行插值 for (int j = 0; j < twidth; j++)
{
for (int i = 0; i < theight; i++)
{ if (dstImage.at<Vec3b>(i, j)[0] == 0 && dstImage.at<Vec3b>(i, j)[1] == 0 && dstImage.at<Vec3b>(i, j)[2] == 0 && i>0 && i < theight)
{
a1 = i - 1;
a2 = i + 1; while (dstImage.at<Vec3b>(a1, j)[0] == 0 && dstImage.at<Vec3b>(a1, j)[1] == 0 && dstImage.at<Vec3b>(a1, j)[2] == 0 && a1 >= 0)
{
a1--;
} while (dstImage.at<Vec3b>(a2, j)[0] == 0 && dstImage.at<Vec3b>(a2, j)[1] == 0 && dstImage.at<Vec3b>(a2, j)[2] == 0 && a2 < twidth)
{
a2++;
}
int s0 = floor(((i - a1)*1.0 / (a2 - a1))*dstImage.at<Vec3b>(a2, j)[0] + ((a2 - i)*1.0 / (a2 - a1))*dstImage.at<Vec3b>(a1, j)[0]);
int s1 = floor(((i - a1)*1.0 / (a2 - a1))*dstImage.at<Vec3b>(a2, j)[1] + ((a2 - i)*1.0 / (a2 - a1))*dstImage.at<Vec3b>(a1, j)[1]);
int s2 = floor(((i - a1)*1.0 / (a2 - a1))*dstImage.at<Vec3b>(a2, j)[2] + ((a2 - i)*1.0 / (a2 - a1))*dstImage.at<Vec3b>(a1, j)[2]);
dstImage.at<Vec3b>(i, j)[0] = saturate_cast<uchar>(s0);
dstImage.at<Vec3b>(i, j)[1] = saturate_cast<uchar>(s1);
dstImage.at<Vec3b>(i, j)[2] = saturate_cast<uchar>(s2); }
}
} imshow("原图", src);
//namedWindow("扩大后的图像", CV_WINDOW_NORMAL);
imshow("扩大后的图像", dstImage); waitKey(0);
return true;
}

  效果图:

Opencv(C++)实现二阶线性插值的更多相关文章

  1. opencv边缘检测的入门剖析(第七天)

    ---边缘检测概念理解--- 边缘检测的理解可以结合前面的内核,说到内核在图像中的应用还真是多,到现在为止学的对图像的操作都是核的操作,下面还有更神奇的! 想把边缘检测出来,从图像像素的角度去想,那就 ...

  2. opencv算法学习

    1.改变图像的亮度和对比度: 算法介绍:对每一点像素值的r,g,b,值进行乘法和加法的运算. 代码使用: ; y < image.rows; y++ ) { ; x < image.col ...

  3. opencv的学习笔记5

    总结原博文中的一些边缘检测算子和滤波器.(Canny算子,  Sobel算子,  Laplace算子以及Scharr滤波器) 首先,一般的边缘检测包括三个步骤: 1)滤波:边缘检测的算法主要是基于图像 ...

  4. OpenCV 之 边缘检测

    上一篇 <OpenCV 之 图像平滑> 中,提到的图像平滑,从信号处理的角度来看,实际上是一种“低通滤波器”. 本篇中,数字图像的边缘,因为通常都是像素值变化剧烈的区域 (“高频”),故可 ...

  5. opencv 简单模糊和高斯模糊 cvSmooth

    cv::Mat 是C++版OpenCV的新结构. cvSmooth() 是老版 C API. 没有把C接口与C + + 结合. 建议你们也可以花一些时间看一下介绍. 同样,你如果查看opencv/mo ...

  6. 【OpenCV】边缘检测:Sobel、拉普拉斯算子

    推荐博文,博客.写得很好,给个赞. Reference Link : http://blog.csdn.net/xiaowei_cqu/article/details/7829481 一阶导数法:梯度 ...

  7. OpenCV图像金字塔:高斯金字塔、拉普拉斯金字塔与图片尺寸缩放

    这篇已经写得很好,真心给作者点个赞.题目都是直接转过来的,直接去看吧. Reference Link : http://blog.csdn.net/poem_qianmo/article/detail ...

  8. 学习OpenCV——Surf(特征点篇)&flann

    Surf(Speed Up Robust Feature) Surf算法的原理                                                             ...

  9. [OpenCV] Feature Extraction

    特征检测 特征描述 特征匹配 特征跟踪 “不读白不读,读了还想读” 的一本基础书 低层次特征提取 阈值方法 1. 边缘检测 一阶检测算子 二阶检测算子 相位一致性(频域) 2. 角点检测(局部特征提取 ...

随机推荐

  1. JMM

    1.JMM简介 i.内存模型概述 Java平台自动集成了线程以及多处理器技术,这种集成程度比Java以前诞生的计算机语言要厉害很多,该语言针对多种异构平台的平台独立性而使用的多线程技术支持也是具有开拓 ...

  2. DBC的故事

    1.DBC定义 DBC(data base CAN)是汽车ECU间进行CAN通讯的报文内容,有了它相互之间才能听懂. 2.DBC查看 DBC是文本文件,可以用记事本打开,一般都用CANdb++,可以更 ...

  3. 以太坊智能合约虚拟机(EVM)原理与实现

    以太坊 EVM原理与实现 以太坊底层通过EVM模块支持合约的执行与调用,调用时根据合约地址获取到代码,生成环境后载入到EVM中运行.通常智能合约的开发流程是用solidlity编写逻辑代码,再通过编译 ...

  4. 布局 android

    1.线性布局 LinearLayout又称作线性布局,是一种非常常用的布局.通过android:orientation属性指定了排列方向是vertical还是horizontal. 如果LinearL ...

  5. ffmpeg 时间戳处理

    视频的显示和存放原理 对于一个电影,帧是这样来显示的:I B B P.现在我们需要在显示B帧之前知道P帧中的信息.因此,帧可能会按照这样的方式来存储:IPBB.这就是为什么我们会有一个解码时间戳和一个 ...

  6. Django单元测试简明实践

    1.准备数据模式,Django空库测试需要所有相关数据模式必须在Django中定义,说白了,model不能有managed=Fasle,为了解决这个问题,你必须得有一个managed全部为True的S ...

  7. RESTful规范建议

    RESTful概述 RESTful是目前最流行的一种互联网软件架构.它结构清晰.符合标准.易于理解.扩展方便,所以正得到越来越多网站的采用. REST是Representational State T ...

  8. python pandas import 失败

    今天因为数据处理的需要,安装了pandas. 我的python版本是2.7,使用的编辑器是pycharm.我现在cmd中输入了pip install pandas,然后显示安装成功,但是在使用pand ...

  9. python 要掌握面向对象,你得会做这些题吗?

    1,面向对象三大特性,各有什么用处,说说你的理解. 继承:解决代码重用问题 多态:多态性,可以在不考虑对象类型的情况下而直接使用对象 封装:明确的区分内外,控制外部对隐藏属性的操作行为,隔离复杂度 2 ...

  10. Java (三、数组)

    Java 数组 数组对于每一门编程语言来说都是重要的数据结构之一,当然不同语言对数组的实现及处理也不尽相同. Java 语言中提供的数组是用来存储固定大小的同类型元素. 声明数组变量 首先必须声明数组 ...