#include<opencv2\opencv.hpp>
#include<iostream> using namespace cv;
using namespace std; bool enlargedImage(Mat &src, float k1, float k2);//k1,k2表示放大的倍数 void main()
{
Mat srcImage = imread("flower.png");
float k1 = 1.2, k2 = 2.5;
enlargedImage(srcImage, k1, k2);
} bool enlargedImage(Mat &src, float k1, float k2)
{
int height, width, theight, twidth;
int ia, ja;//新的坐标
height = src.rows;//图像的高
width = src.cols;//图像的宽
theight = round(height*k1);//扩大后图像的高
cout << theight << endl;
twidth = round(width*k2);//扩大后图像的宽
cout << twidth << endl;
Mat dstImage(theight, twidth, src.type(), Scalar(0));
//对得到的新图片进行填充 for (int i = 0; i < height; i++)
{
for (int j = 0; j < width - 1; j++)
{ ia = round(i*k1);
ja = round(j*k2);
//如果位于四个顶角
if (ia == 0 && ja == 0)//左顶角
{
dstImage.at<Vec3b>(ia, ja)[0] = src.at<Vec3b>(i, j)[0];
dstImage.at<Vec3b>(ia, ja)[1] = src.at<Vec3b>(i, j)[1];
dstImage.at<Vec3b>(ia, ja)[2] = src.at<Vec3b>(i, j)[2];
}
else if (ia == theight - 1 && ja == twidth - 1)//左下角
{
dstImage.at<Vec3b>(ia, ja)[0] = src.at<Vec3b>(i, j)[0];
dstImage.at<Vec3b>(ia, ja)[1] = src.at<Vec3b>(i, j)[1];
dstImage.at<Vec3b>(ia, ja)[2] = src.at<Vec3b>(i, j)[2];
}
else if (ia == 0 && ja == twidth - 1)//右顶角
{
dstImage.at<Vec3b>(ia, ja)[0] = src.at<Vec3b>(i, j)[0];
dstImage.at<Vec3b>(ia, ja)[1] = src.at<Vec3b>(i, j)[1];
dstImage.at<Vec3b>(ia, ja)[2] = src.at<Vec3b>(i, j)[2];
}
else if (ia == theight - 1 && ja == twidth - 1)//右下角
{
dstImage.at<Vec3b>(ia, ja)[0] = src.at<Vec3b>(i, j)[0];
dstImage.at<Vec3b>(ia, ja)[1] = src.at<Vec3b>(i, j)[1];
dstImage.at<Vec3b>(ia, ja)[2] = src.at<Vec3b>(i, j)[2];
}
else if (ja == twidth - 1)//第三种情况,最右边
{
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, ja)[0] = src.at<Vec3b>(i, j)[0];
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, ja)[1] = src.at<Vec3b>(i, j)[1];
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, ja)[2] = src.at<Vec3b>(i, j)[2];
}
else if (ia == 0)//第一种情况,最上面
{
dstImage.at<Vec3b>(ia, round((j - 1)*k2) + 1)[0] = src.at<Vec3b>(i, j)[0];
dstImage.at<Vec3b>(ia, round((j - 1)*k2) + 1)[1] = src.at<Vec3b>(i, j)[1];
dstImage.at<Vec3b>(ia, round((j - 1)*k2) + 1)[2] = src.at<Vec3b>(i, j)[2];
}
else if (ja == 0)//第二种情况,最左边
{
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, ja)[0] = src.at<Vec3b>(i, j)[0];
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, ja)[1] = src.at<Vec3b>(i, j)[1];
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, ja)[2] = src.at<Vec3b>(i, j)[2];
} else if (ia == theight - 1)//第四种情况,最下面
{
dstImage.at<Vec3b>(ia, round((j - 1)*k2) + 1)[0] = src.at<Vec3b>(i, j)[0];
dstImage.at<Vec3b>(ia, round((j - 1)*k2) + 1)[1] = src.at<Vec3b>(i, j)[1];
dstImage.at<Vec3b>(ia, round((j - 1)*k2) + 1)[2] = src.at<Vec3b>(i, j)[2];
}
//最后一种情况,位于中间的,将值赋给左上角的值
else
{
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, round((j - 1)*k2) + 1)[0] = src.at<Vec3b>(i, j)[0];
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, round((j - 1)*k2) + 1)[1] = src.at<Vec3b>(i, j)[1];
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, round((j - 1)*k2) + 1)[2] = src.at<Vec3b>(i, j)[2];
}
}
}
for (int i = 0; i < height; i++)
{
//单独考虑最右边
int j = width - 1;
ia = round(i*k1);
ja = round(j*k2);
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, ja + 1)[0] = src.at<Vec3b>(i, j)[0];
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, ja + 1)[1] = src.at<Vec3b>(i, j)[1];
dstImage.at<Vec3b>(round((i - 1)*k1) + 1, ja + 1)[2] = src.at<Vec3b>(i, j)[2]; } int a1, a2, b1, b2;//用来表示单线性插值中的上下左右中不为0的坐标
//利用单线性进行了行插值
for (int i = 0; i < theight; i++)
{
for (int j = 0; j < twidth; j++)
{
//首先考虑的满足单线性插值的 if (dstImage.at<Vec3b>(i, 0)[0] == 0 && dstImage.at<Vec3b>(i, 0)[1] == 0 && dstImage.at<Vec3b>(i, 0)[2] == 0)
{
continue;
} if (dstImage.at<Vec3b>(i, j)[0] == 0 && dstImage.at<Vec3b>(i, j)[1] == 0 && dstImage.at<Vec3b>(i, j)[2] == 0&& j>0 && j < twidth)
{
b1 = j - 1;
b2 = j + 1; while (dstImage.at<Vec3b>(i, b1)[0] == 0 && dstImage.at<Vec3b>(i, b1)[1] == 0 && dstImage.at<Vec3b>(i, b1)[2] == 0 && b1 >= 0)
{
b1--;
} while (dstImage.at<Vec3b>(i, b2)[0] == 0 && dstImage.at<Vec3b>(i, b2)[1] == 0 && dstImage.at<Vec3b>(i, b2)[2] == 0 && b2 <twidth)
{
b2++;
}
int sfrg0 = floor(((j - b1)*1.0 / (b2 - b1))*dstImage.at<Vec3b>(i, b2)[0] + ((b2 - j)*1.0 / (b2 - b1))*dstImage.at<Vec3b>(i, b1)[0]);
int sfrg1 = floor(((j - b1)*1.0 / (b2 - b1))*dstImage.at<Vec3b>(i, b2)[1] + ((b2 - j)*1.0 / (b2 - b1))*dstImage.at<Vec3b>(i, b1)[1]);
int sfrg2 = floor(((j - b1)*1.0 / (b2 - b1))*dstImage.at<Vec3b>(i, b2)[2] + ((b2 - j)*1.0 / (b2 - b1))*dstImage.at<Vec3b>(i, b1)[2]);
dstImage.at<Vec3b>(i, j)[0] = saturate_cast<uchar>(sfrg0);
dstImage.at<Vec3b>(i, j)[1] = saturate_cast<uchar>(sfrg1);
dstImage.at<Vec3b>(i, j)[2] = saturate_cast<uchar>(sfrg2); }
}
}
//利用单线性对列进行插值 for (int j = 0; j < twidth; j++)
{
for (int i = 0; i < theight; i++)
{ if (dstImage.at<Vec3b>(i, j)[0] == 0 && dstImage.at<Vec3b>(i, j)[1] == 0 && dstImage.at<Vec3b>(i, j)[2] == 0 && i>0 && i < theight)
{
a1 = i - 1;
a2 = i + 1; while (dstImage.at<Vec3b>(a1, j)[0] == 0 && dstImage.at<Vec3b>(a1, j)[1] == 0 && dstImage.at<Vec3b>(a1, j)[2] == 0 && a1 >= 0)
{
a1--;
} while (dstImage.at<Vec3b>(a2, j)[0] == 0 && dstImage.at<Vec3b>(a2, j)[1] == 0 && dstImage.at<Vec3b>(a2, j)[2] == 0 && a2 < twidth)
{
a2++;
}
int s0 = floor(((i - a1)*1.0 / (a2 - a1))*dstImage.at<Vec3b>(a2, j)[0] + ((a2 - i)*1.0 / (a2 - a1))*dstImage.at<Vec3b>(a1, j)[0]);
int s1 = floor(((i - a1)*1.0 / (a2 - a1))*dstImage.at<Vec3b>(a2, j)[1] + ((a2 - i)*1.0 / (a2 - a1))*dstImage.at<Vec3b>(a1, j)[1]);
int s2 = floor(((i - a1)*1.0 / (a2 - a1))*dstImage.at<Vec3b>(a2, j)[2] + ((a2 - i)*1.0 / (a2 - a1))*dstImage.at<Vec3b>(a1, j)[2]);
dstImage.at<Vec3b>(i, j)[0] = saturate_cast<uchar>(s0);
dstImage.at<Vec3b>(i, j)[1] = saturate_cast<uchar>(s1);
dstImage.at<Vec3b>(i, j)[2] = saturate_cast<uchar>(s2); }
}
} imshow("原图", src);
//namedWindow("扩大后的图像", CV_WINDOW_NORMAL);
imshow("扩大后的图像", dstImage); waitKey(0);
return true;
}

  效果图:

Opencv(C++)实现二阶线性插值的更多相关文章

  1. opencv边缘检测的入门剖析(第七天)

    ---边缘检测概念理解--- 边缘检测的理解可以结合前面的内核,说到内核在图像中的应用还真是多,到现在为止学的对图像的操作都是核的操作,下面还有更神奇的! 想把边缘检测出来,从图像像素的角度去想,那就 ...

  2. opencv算法学习

    1.改变图像的亮度和对比度: 算法介绍:对每一点像素值的r,g,b,值进行乘法和加法的运算. 代码使用: ; y < image.rows; y++ ) { ; x < image.col ...

  3. opencv的学习笔记5

    总结原博文中的一些边缘检测算子和滤波器.(Canny算子,  Sobel算子,  Laplace算子以及Scharr滤波器) 首先,一般的边缘检测包括三个步骤: 1)滤波:边缘检测的算法主要是基于图像 ...

  4. OpenCV 之 边缘检测

    上一篇 <OpenCV 之 图像平滑> 中,提到的图像平滑,从信号处理的角度来看,实际上是一种“低通滤波器”. 本篇中,数字图像的边缘,因为通常都是像素值变化剧烈的区域 (“高频”),故可 ...

  5. opencv 简单模糊和高斯模糊 cvSmooth

    cv::Mat 是C++版OpenCV的新结构. cvSmooth() 是老版 C API. 没有把C接口与C + + 结合. 建议你们也可以花一些时间看一下介绍. 同样,你如果查看opencv/mo ...

  6. 【OpenCV】边缘检测:Sobel、拉普拉斯算子

    推荐博文,博客.写得很好,给个赞. Reference Link : http://blog.csdn.net/xiaowei_cqu/article/details/7829481 一阶导数法:梯度 ...

  7. OpenCV图像金字塔:高斯金字塔、拉普拉斯金字塔与图片尺寸缩放

    这篇已经写得很好,真心给作者点个赞.题目都是直接转过来的,直接去看吧. Reference Link : http://blog.csdn.net/poem_qianmo/article/detail ...

  8. 学习OpenCV——Surf(特征点篇)&flann

    Surf(Speed Up Robust Feature) Surf算法的原理                                                             ...

  9. [OpenCV] Feature Extraction

    特征检测 特征描述 特征匹配 特征跟踪 “不读白不读,读了还想读” 的一本基础书 低层次特征提取 阈值方法 1. 边缘检测 一阶检测算子 二阶检测算子 相位一致性(频域) 2. 角点检测(局部特征提取 ...

随机推荐

  1. 通过jQuery源码学习javascript(三)

    承接上两篇继续写下去.我尽量把我明白的地方给大家说清楚.有些大家的提问我也有点搞不明白,如果有人能解答,再好不过了 疑问  第一篇中有位博友提出了以下的问题,我也不太明白,如果有明白的,能否告知一.二 ...

  2. SpringBoot使用Maven插件打包部署

    [问题] 之前一直用SpringBoot做一些小项目,想打包部署在环境上,总是少依赖包jar.百度下可以通过Spring Boot Maven plugin插件,把Maven配置的依赖包都打到项目包里 ...

  3. 代码审计之SQL注入:BlueCMSv1.6 sp1

    Preface 这是一篇纪录关于BlueCMSv1.6 sp1两个SQL注入的审计过程,原文来自代码审计之SQL注入:BlueCMSv1.6 sp1 ,主要纪录一下个人在参考博文复现这两个漏洞经过. ...

  4. Java面试题全集(上-中-下)及Java面试题集(1-50/51-70)

    阅读量超百万级的文章,收藏并分享一下.感谢原创作者的总结 对初中级java开发人员有特别大的帮助,不论是技术点面试还是知识点总结上. Java面试题全集(上):     https://blog.cs ...

  5. SublimeText3常用快捷键和优秀插件

    SublimeText3常用快捷键和优秀插件 SublimeText是前端的一个神器,以其精简和可DIY而让广大fans疯狂.好吧不吹了直入正题 -_-!! 首先是安装,如果你有什么软件管家的话搜一下 ...

  6. java线程之线程同步

    本篇由于涉及多线程操作,所以线程是使用实现Runnable接口来创建的. 在上篇所示线程任务中,我们不难发现,是存在三步操作的: 第一:打印语句: 第二:计算sum=sum-1: 第三:线程休眠. 那 ...

  7. 分布式缓存管理平台XXL-CACHE

    <分布式缓存管理平台XXL-CACHE> 一.简介 1.1 概述 XXL-CACHE是一个分布式缓存管理平台,其核心设计目标是"让分布式缓存的接入和管理的更加的简洁和高效&quo ...

  8. 【python3】如何建立爬虫代理ip池

    一.为什么需要建立爬虫代理ip池 在众多的网站防爬措施中,有一种是根据ip的访问频率进行限制的,在某段时间内,当某个ip的访问量达到一定的阀值时,该ip会被拉黑.在一段时间内被禁止访问. 这种时候,可 ...

  9. 能否使用require('.json')的方式加载大量JSON文件?

    Node.js中推崇非阻塞I/O,但是require一个模块时却是同步调用的,这会带来性能上的开销,但并不是每次require都很耗时,因为在require成功之后会缓存起来,在此加载时直接从缓存读取 ...

  10. linux Tcpdump使用方法

    用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具. tcpdump可以将网络中传送的数据包的&qu ...